Autonom schaltbare Polymermaterialien die sich an Bewegungen und Umweltbedingungen anpassen

Vision: Materialien, die auf aktive Trigger reagieren

19.07.2023 - Deutschland

Ein weiches Exoskelett zur Unterstützung von Schlaganfallpatienten oder Pflaster zur kontrollierten Abgabe von Arzneimitteln müssen aus Materialien bestehen, die sich intelligent und selbstständig an die Bewegungen der Träger*innen sowie an wechselnde Umweltbedingungen anpassen. Materialwissenschaftler*innen der Universität Stuttgart und Pharmazeut*innen der Universität Tübingen haben nun gemeinsam autonom schaltbare Polymermaterialien entwickelt, die genau dies leisten können. Über die Forschungsergebnisse berichtet das führende Fachmagazin Advanced Materials Technologies.

F. Sterl, Universität Stuttgart, FSM-Labor

Intelligentes Gummimaterial, das sich der Umgebungsfeuchte anpasst. Das Armband demonstriert die Fähigkeit, sich an Bewegungen, zum Beispiel eines Handgelenks, anzupassen

In der Publikation „Autonomous Adaption of Intelligent Humidity-Programmed Hydrogel Patches“ demonstrieren die Gruppen um Prof. Sabine Ludwigs (Institut für Polymerchemie) und Prof. Holger Steeb (Institut für Mechanik, MIB) von der Universität Stuttgart sowie Prof. Dominique Lunter (Pharmazeutische Technologie, Universität Tübingen) die Herstellung intelligenter Polymermaterialien. Intelligent bedeutet hier, dass sich die Materialeigenschaften autonom ihren Umgebungsbedingungen anpassen können. Abhängig von Luftfeuchte und Temperatur zeigen die Materialien Steifigkeitsänderungen über mehr als vier Größenordnungen und lassen sich selbst bei großen Deformationen elastisch verformen. Die mechanischen Eigenschaften sind damit für die jeweilige Anwendung einstellbar.

Extrem hohe Anpassungsfähigkeit

Die korrespondierende Autorin Sabine Ludwigs bezeichnet die Materialien als „Intelligente Gummimaterialien“ und ergänzt: „Diese extreme Anpassungsfähigkeit macht unsere Polymere extrem attraktiv für Roboter aus weichen organischen Materialien, wie sie – Stichwort Soft Robotics – beispielsweise in der Biomedizin oder auch bei Such- und Bergungseinsätzen verwendet werden. Auch für intelligente Hautanwendungen wie etwa Exoskelette aus weichen flexiblen Stoffen sind die Polymere sehr gut geeignet.“ Bei beiden Anwendungen muss das Material sowohl schnelle als auch langsame Bewegungen ermöglichen, also einstellbare viskoelastische Eigenschaften aufweisen. „Unser Material kann das“, sagt Holger Steeb.

Die Anpassung an Feuchte und die reversible Wasseraufnahmefähigkeit eröffnen weiterhin den Einsatz als Pflaster für die kontrollierte Arzneimittelfreigabe durch die Haut. Ganz konkret experimentierten die Forschenden mit der Freigabe des Schmerzmittels Diclofenac in einem Hautmodell. „Der Trick besteht darin, dass die Wirkstofffreisetzung als Reaktion auf die veränderliche Feuchte der Wunde, also abhängig vom Wundexsudat, vom Pflaster selbst gesteuert wird“, erklärt die Tübinger Pharmazie-Expertin Dominique Lunter.

Die Arbeiten entstanden im Rahmen des neu eingerichteten, fakultätsübergreifenden Labors für Functional Soft Materials (FSM Labor) am Exzellenzcluster Datenintegrierte Simulationswissenschaft (EXC 2075, SimTech) der Universität Stuttgart. Es handelt sich hierbei um eine sehr erfolgreiche Kooperation der Arbeitsgruppen um Sabine Ludwigs aus der Polymerchemie und von Holger Steeb aus der Mechanik, die im FSM-Labor ihre Expertisen im Bereich der Chemie sowie der Funktion und Mechanik von intelligenten Polymermaterialien bündeln.

Vision: Materialien, die auf aktive Trigger reagieren

Über die Feuchte- und Temperaturabhängigkeit hinausgehend wollen die Stuttgarter Forschenden in Zukunft multifunktionale Materialsysteme untersuchen, die sich sowohl autonom an ihre Umgebung anpassen, als auch auf aktive Trigger, wie zum Beispiel elektrische Stimuli reagieren können. Geplant ist auch die Modellierung und damit die Vorhersage komplexer Architekturen auf der Basis von Simulationen. Die Ergebnisse der Forschung im Bereich der Polymeren Materialwissenschaften kommen somit auch der Forschung des Exzellenzclusters „Daten-Integrierte Simulationswissenschaft „(SimTech)“ der Universität zugute.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

HYPERION II

HYPERION II von Bruker

FT-IR und IR-Laser-Imaging (QCL) Mikroskop für Forschung und Entwicklung

Untersuchen Sie makroskopische Proben mit mikroskopischer Auflösung (5 µm) in sekundenschnelle

FT-IR-Mikroskope
Eclipse

Eclipse von Wyatt Technology

FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln

Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller