Nanopartikel mit beispielloser Präzision beobachten

Ausgeleuchtet: Forschende untersuchen neue physikalische Phänomene auf der Nanoskala mit mikrostrukturierten Fasern

15.09.2023
Leibniz-Institut für Photonische Technologien e. V.

Komplexe Nanostrukturierungen in optischen Fasern sorgen für die Bildung des neuen Lichtmode (links) sowie für die Detektion selbst kleinster Partikel (rechts).

Forschenden des Leibniz-IPHT ist es gelungen, zu bedeutenden Fortschritten bei der Entschlüsselung winziger Nanoobjekte beizutragen: Mithilfe optischer Spezialfasern identifizierten sie einen neuen optischen Mode, der eine gleichmäßige Ausleuchtung entlang der gesamten Faserlänge ermöglicht, und bestimmten die Auflösungsgrenze einzelner mit Fasern bisher messbarer Objekte. Damit legen sie die Basis, um Nanopartikel mit beispielloser Präzision zu beobachten. Die Ergebnisse ihrer Studien wurden in den Fachzeitschriften OPTICA und Nature Communications veröffentlicht.

Um schnell bewegliche Nanopartikel in der Pharmazie, der Bioanalytik oder den Materialwissenschaften zu charakterisieren, stellen faserbasierte Methoden einen vielversprechenden Ansatz dar. Insbesondere die faserunterstützte Nanopartikel-Tracking-Analyse (Fiber-assisted Nanoparticle Tracking Analysis, FaNTA) ermöglicht es, einzelne in Mikrokanäle optischer Fasern eingeschlossene Nanoobjekte gezielt mikroskopisch zu beobachten und ihre Größenverteilung präzise zu ermitteln. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) in Jena forschen an den Möglichkeiten des FaNTA-Verfahrens und ihren Potentialen für verschiedenste nanoskalige Anwendungen.

Entdeckung eines neuen Lichtzustands

Im Rahmen ihrer Forschungsarbeiten konnten sie nun erstmals einen neuen optischen Mode in Glasfasern nachweisen. Dieser als Lichtstrang identifizierte Mode, den sie in der Fachzeitschrift OPTICA skizzieren, ermöglicht eine äußerst homogene und konstante Beleuchtung von diffundierenden Nanopartikeln entlang der gesamten Faser.

Für die Erzeugung solcher Lichtintensitäten in optischen Fasern sind ausgeklügelte Nanostrukturierungen in Form von flüssigkeitsgefüllten Nanokanälen im Faserkern nötig, die zur Echtzeit-Erkennung und -Zählung von Nanoobjekten verwendet werden können. Um die Bildung des neuen Lichtmode in Fasern und seinen Vorteil für die FaNTA-Methode zu demonstrieren, statteten die Forschenden in experimentellen Studien eine optische Spezialfaser mit einem lichtleitenden Kanal in der Mitte des Faserkerns mit einem Durchmesser von 400 Nanometern aus, der mit einer flüssigen Lösung und darin eingeschlossenen Nanoobjekten gefüllt ist. Hergestellt wurde die Faser von dem Unternehmen Heraeus Conamic. Wird Licht in die Faser eingekoppelt, breitet sich dieses gleichmäßig entlang des integrierten Fluidkanals in Form eines Strangs aus. Infolgedessen kann die zu untersuchende Probe einschließlich der darin befindlichen Nanoobjekte intensiv und äußerst homogen beleuchtet werden. Das Licht, das von einzelnen Nanopartikeln gestreut wird, erlaubt schließlich, hochgenau Dynamiken der Partikelobjekte zu beobachten.

„Der Lichtstrang, der durch das mikrostrukturierte Faserdesign geformt wird, ermöglicht eine bisher nicht dagewesene gleichmäßige Ausleuchtung mit konstant hoher Lichtintensität in optofluidischen Fasern und damit außerordentlich langes und noch präziseres Verfolgen winzig kleiner Objekte. Wir verhindern die Intensitätsvariationen des Lichts, die typischerweise am äußeren Rand eines Nanokanals auftreten. Dadurch können wir auch kleinste Nanopartikel konsistent detektieren und somit sehr hohe Messgenauigkeiten erzielen“, erklärt Prof. Dr. Markus A. Schmidt, Leiter der Forschungsabteilung Faserphotonik am Leibniz-IPHT, der gemeinsam mit seinem Team und dem Expertenwissen der Quarzglas-Spezialisten von Heraeus den neuen Lichtmode aufdeckte.

Die gewonnenen Erkenntnisse tragen zur Optimierung des FaNTA-Verfahrens bei der Detektion kleinster Nanoobjekte bei. So ließen sich zum Beispiel schnell diffundierende Partikel in den Biowissenschaften, wie Viren, deren Anzahl und Größenverteilung, sowie chemische Reaktionen, beispielsweise bei der Untersuchung von Wirkmechanismen von Medikamenten, sehr genau bestimmen.

Identifizierung kleinster messbarer Nanopartikel

Beobachtungen extrem kleiner Prozesse und Partikelspezis gewinnen darüber hinaus auch im Bereich der Halbleiterindustrie bei der Herstellung von Mikrochips und der Identifizierung von Verunreinigungen an Bedeutung. Die FaNTA-Methode erlaubt, auch diese nanoskaligen Vorgänge im Bereich der Materialwissenschaften mit hoher Präzision mikroskopisch zu verfolgen.

In experimentellen Versuchen mit mikrostrukturierten optischen Fasern, in deren fluidische Mikrokanäle winzige Nanoobjekte eingeschlossen wurden, gelang es den Leibniz-IPHT-Forschenden, das bisher kleinste mit FaNTA messbare Partikel aufzuspüren und damit die Auflösungsgrenze des FaNTA-Messverfahrens auszuloten. In ihren Experimenten, die sie in der Fachzeitschrift Nature Communications beschreiben, untersuchten sie hierzu Gemische mit Kleinstpartikeln und konnten selbst extrem kleine, frei diffundierende Nanopartikel mit einem Durchmesser von nur neun Nanometern mit beispielloser Präzision charakterisieren. Das entspricht dem kleinsten Durchmesser, der bisher für ein einzelnes Nanopartikel mithilfe der Nanopartikel-Tracking-Analyse festgestellt werden konnte.

Damit bietet das FaNTA-Verfahren das Potential, auch bisher schwer zugängliche nanoskalige Anwendungen zu erschließen und beispielsweise das Wachstum von Nanopartikeln oder die Qualitätskontrolle von Arzneimitteln in Zukunft noch besser überwachen zu können.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

NANOPHOX CS

NANOPHOX CS von Sympatec

Partikelgrößenanalyse im Nanobereich: Hohe Konzentrationen problemlos analysieren

Zuverlässige Ergebnisse ohne aufwändige Probenvorbereitung

Partikelanalysatoren
DynaPro Plate Reader III

DynaPro Plate Reader III von Wyatt Technology

Screening von Biopharmazeutika und anderen Proteinen mit automatisierter dynamischer Lichtstreuung

Hochdurchsatz-DLS/SLS-Messungen von Lead Discovery bis Qualitätskontrolle

Partikelanalysatoren
Eclipse

Eclipse von Wyatt Technology

FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln

Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Partikelanalyse

Die Methoden der Partikelanalyse erlaubt es uns, winzige Partikel in verschiedenen Materialien zu untersuchen und ihre Eigenschaften zu enthüllen. Ob in der Umweltüberwachung, der Nanotechnologie oder der pharmazeutischen Industrie – die Partikelanalyse eröffnet uns einen Blick in eine verborgene Welt, in der wir die Zusammensetzung, Größe und Form von Partikeln entschlüsseln können. Erleben Sie die faszinierende Welt der Partikelanalyse!

35+ Produkte
10+ White Paper
30+ Broschüren
Themenwelt anzeigen
Themenwelt Partikelanalyse

Themenwelt Partikelanalyse

Die Methoden der Partikelanalyse erlaubt es uns, winzige Partikel in verschiedenen Materialien zu untersuchen und ihre Eigenschaften zu enthüllen. Ob in der Umweltüberwachung, der Nanotechnologie oder der pharmazeutischen Industrie – die Partikelanalyse eröffnet uns einen Blick in eine verborgene Welt, in der wir die Zusammensetzung, Größe und Form von Partikeln entschlüsseln können. Erleben Sie die faszinierende Welt der Partikelanalyse!

35+ Produkte
10+ White Paper
30+ Broschüren