Forscher entwickelt mit Hilfe von KI eine neue Methode zur Verbesserung von Elektrokatalysatoren
Computerprogramm kann gleichzeitig mehrere Eigenschaften eines Katalysators optimieren
Hochentropie-Legierungen (HEAs) sind eine vielversprechende Art von Materialien für die Elektrokatalyse. Elektrokatalyse ist ein Prozess, bei dem bestimmte Materialien dabei helfen, chemische Reaktionen zu beschleunigen, die in Batterien oder Brennstoffzellen ablaufen. Im Gegensatz zu herkömmlichen Metallkatalysatoren bestehen diese Materialien aus einer Mischung vieler Elemente. Deshalb sind sie sehr komplex aufgebaut und könnten daher bessere katalytische Eigenschaften in Elektrolyseuren und Brennstoffzellen haben. Es ist jedoch schwierig für Forscherinnen und Forscher, die beste Mischung von Elementen für eine bestimmte Anwendung zu finden.
„Bisherige Arbeiten haben sich hauptsächlich darauf konzentriert, die katalytische Aktivität zu verbessern“, sagt Prof. Dr. Johannes Margraf, Lehrstuhl für Physikalische Chemie V: Theorie und Maschinelles Lernen an der Universität Bayreuth. „Wir haben jedoch einen Algorithmus entwickelt, der durch Simulationen und künstliche Intelligenz gleichzeitig mehrere Eigenschaften des Katalysators verbessern kann, wie zum Beispiel Aktivität, Kosten und Stabilität.“ Dadurch konnten die Forschenden aus Bayreuth und vom Fritz-Haber-Institut in Berlin viele neue HEAs vorhersagen, die verschiedene Kompromisse zwischen diesen Eigenschaften bieten.
„Wir haben den Algorithmus speziell für die Sauerstoffreduktion in Brennstoffzellen getestet, wo normalerweise teures Platin als Katalysator verwendet wird. Dabei haben wir Katalysatoren gefunden, die genauso aktiv sind wie Platin, aber viel weniger kosten - nur 10 Prozent im Vergleich zu Platin“, erläutert Margraf. „Zudem konnten wir Katalysatoren bestimmen, die zweieinhalbmal so aktiv sind wie Platin, aber ähnliche Kosten aufrufen.“
Die bisher theoretischen Vorhersagen des Bayreuther Forschers müssen nun noch durch praktische Experimente bestätigt werden.
Originalveröffentlichung
Meistgelesene News
Originalveröffentlichung
Wenbin Xu, Elias Diesen, Tianwei He, Karsten Reuter, Johannes T. Margraf; "Discovering High Entropy Alloy Electrocatalysts in Vast Composition Spaces with Multiobjective Optimization"; Journal of the American Chemical Society, 2024-3-11
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.