Durchbruch in der Chiralitätsforschung eröffnet neue Horizonte für die Wissenschaft

30.08.2024

In einer Studie mit dem Titel „Near-complete chiral selection in rotational quantum states“, veröffentlicht in Nature Communications, hat die Controlled Molecules Gruppe aus der Abteilung Molekülphysik des Fritz-Haber-Instituts einen bedeutenden Fortschritt im Bereich der chiralen Moleküle gemacht. Das Team, unter der Leitung von Dr. Sandra Eibenberger-Arias, erreichte eine nahezu vollständige Trennung in Quantenzuständen für diese essenziellen Bestandteile des Lebens.

© FHI

Diese Entdeckung stellt bisherige Annahmen über die praktischen Grenzen der Quantenzustandskontrolle chiraler Moleküle in Frage und ebnet den Weg für neue Forschungsrichtungen in der Molekülphysik und darüber hinaus.

Chirale Moleküle, die ähnlich wie unsere Hände als zwei nicht deckungsgleiche Spiegelbildversionen existieren, genannt Enantiomere, haben große Bedeutung für das Gefüge des Lebens. Die Möglichkeit, diese Moleküle und ihre Quantenzustände zu kontrollieren, hat tiefgreifende Implikationen, von der räumlichen Trennung der Enantiomere in der Gasphase bis hin zur Überprüfung von Hypothesen über den Ursprung der Homochiralität des Lebens – die Bevorzugung eines Spiegelbildes über das andere in biologischen Systemen.

Bislang glaubte die wissenschaftliche Gemeinschaft, dass eine perfekte Kontrolle über die Quantenzustände dieser Moleküle zwar theoretisch möglich, aber praktisch unerreichbar sei. Das Team am Fritz-Haber-Institut hat jedoch das Gegenteil bewiesen. Durch das Schaffen nahezu idealer experimenteller Bedingungen haben sie gezeigt, dass eine 96 prozentige Reinheit im Quantenzustand eines Enantiomers (eines der beiden Spiegelbilder) erreichbar ist, mit nur 4 Prozent des anderen, was bedeutend näher an das Ziel von 100% Selektivität heranrückt.

Dieser Durchbruch wurde durch den Einsatz von maßgeschneiderten Mikrowellenfeldern in Kombination mit ultravioletter Strahlung ermöglicht, was eine beispiellose Kontrolle über die Moleküle erlaubt. Im Experiment durchquert ein Strahl von Molekülen, deren Rotationsbewegungen größtenteils unterdrückt sind (abgekühlt auf eine Rotations-Temperatur von etwa 1 Grad über dem absoluten Nullpunkt), drei Interaktionsbereiche, in denen er resonanter UV- und Mikrowellenstrahlung ausgesetzt ist. Daraus resultierend - ein bedeutender Fortschritt in Molekülstrahlexperimenten - enthalten ausgewählte Rotationsquantenzustände fast ausschließlich das ausgewählte Enantiomer eines chiralen Moleküls.

Das neue Experiment eröffnet neue Möglichkeiten für die Untersuchung grundlegender physikalischer und chemischer Effekte, die chirale Moleküle involvieren. Die Methode des Teams bietet einen neuen Pfad zur Erforschung der Paritätsverletzung in chiralen Molekülen – ein Phänomen, das theoretisch vorhergesagt, aber experimentell noch nicht beobachtet wurde. Dies könnte tiefgreifende Auswirkungen auf unser Verständnis der grundlegenden (A)Symmetrien des Universums haben.

Im Wesentlichen zeigt diese Studie, dass ein nahezu vollständiger, enantiomerenspezifischer Zustandstransfer möglich ist und dass die Methode auf den Großteil aller chiralen Moleküle angewendet werden kann. Es wird erwartet, dass diese Entdeckung wichtige neue Möglichkeiten in der Molekülphysik eröffnet, einschließlich neuer Forschungsansätze und potenzieller Anwendungen.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller