Quantenphysik trifft Materialphysik

02.08.2010 - Österreich

Eine Forschungsgruppe um Georg Kresse, Professor für Computational Quantum Mechanics an der Universität Wien, hat eine neuartige Methode zur Beschreibung der Wechselwirkung zwischen Elektronen entwickelt. Damit können chemische Prozesse an Oberflächen mit unübertroffener Genauigkeit berechnet, sowie Struktur und Bindungsstärke von Materialien wesentlich genauer vorhergesagt werden.

Florian Mittendorfer, Universität Wien

Benzol_Ni(111): Benzol Moleküle auf einer Ni(111) Oberfläche.

Verbesserte Beschreibung der Korrelationsenergie

Der verstärkte Einsatz von Computersimulationen zählt zu den bedeutendsten Entwicklungen der letzten Jahrzehnte in den Materialwissenschaften. Für eine atomistische quantenmechanische Beschreibung kommen dabei vor allem Methoden der Dichtefunktionaltheorie (DFT) zum Einsatz, wie das in der Gruppe an der Universität Wien entwickelte Vienna Ab-initio Simulation Package (VASP).

Die Komplexität des quantenmechanischen Vielelektronenproblems erfordert allerdings eine genäherte Beschreibung der Wechselwirkung zwischen den Elektronen. Die bisher üblichen Näherungen erlauben zwar häufig eine gute Vorhersage von Trends, absolute Bindungsenergien sind aber mit Fehlern bis zu 20 Prozent behaftet. Weiters werden viele Effekte, wie z.B. Van-der-Waals-Wechselwirkungen damit nur unzureichend wiedergegeben. Diese Van-der-Waals-Wechselwirkungen sind aber essentiell, um die Bindung zwischen Molekülen und zwischen Molekülen und Oberflächen zu beschreiben. Die Forscher der Universität Wien fanden nun einen Weg, die Wechselwirkung zwischen den Elektronen im Rahmen einer näherungsweisen Vielelektronentheorie genau zu berechnen. Laurids Schimka von der Forschungsgruppe um Georg Kresse meint dazu: "Durch den nicht-lokalen Ansatz zur Beschreibung der Wechselwirkung zwischen den Elektronen können wir jetzt Systeme simulieren, bei denen lokale DFT-Ansätze versagen."

Computergestützte Oberflächenphysik

Ein zentrales Thema der Oberflächenphysik ist die Beschreibung von Vorgängen an der Grenzfläche zwischen einem Material und seiner gasförmigen Umgebung. Die Oberflächenphysik bildet damit die Grundlage für das Verständnis von katalytischen Prozessen, wie der Oxidation von giftigem Kohlenmonoxid (CO) zu ungiftigem Kohlendioxid in Fahrzeugkatalysatoren. Bei der Beschreibung der Adsorption von Kohlenmonoxid auf Metallen zeigen alle bisherigen Ansätze in der Dichtefunktionaltheorie fundamentale Schwächen: Entweder wird die Stabilität der Oberfläche oder die Wechselwirkung mit den adsorbierenden Molekülen überschätzt.

Erst mit dem neuen Ansatz können beide Eigenschaften korrekt beschrieben werden. Zusätzlich werden auch wichtige Beiträge wie die Van-der-Waals-Wechselwirkung zwischen organischen Molekülen und metallischen Oberflächen berücksichtigt. Mit dieser neuen Methode werden daher chemische Prozesse an Oberflächen wesentlich genauer modelliert. Damit können Computersimulationen verstärkt zum Design von neuartigen Materialen für die Katalyse oder den Korrosionsschutz eingesetzt werden.

Originalveröffentlichung: Laurids Schimka, Judith Harl, Alessandro Stroppa, Andreas Grüneis, Martijn Marsman, Florian Mittendorfer und Georg Kresse; "Accurate surface and adsorption energies from man-body perturbation theory"; Nature Materials, 25.Juli 2010

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...