Dem Wasserkreislauf auf der Spur
Abnehmende Verdunstung aus der Erdoberfläche trotz Erwärmung der Erdatmosphäre
Ohne Wasserverdunstung würde es unter unseren Fußsohlen ziemlich heiß. Denn beim Verdampfen verbraucht die Feuchtigkeit des Bodens und der Pflanzen mehr als die Hälfte der Sonnenenergie, die auf die Kontinente trifft - und kühlt so die Erdoberfläche. Wie viel Feuchtigkeit dabei in die Atmosphäre aufsteigt, haben Wissenschaftler der Fluxnet-Initiative, die den weltweiten Stoffaustausch zwischen der Biosphäre und der Atmosphäre beobachtet, jetzt erstmals genau abgeschätzt. Demnach verdunsteten zwischen 1982 und 2008 im Durchschnitt weltweit jährlich 65.000 Kubikkilometer Wasser, das entspricht fast der Wassermenge des Kaspischen Meers, dem größten See der Erde. Dieser aus Daten abgeleitete Wert entspricht früheren Hochrechnungen aus anderen Studien. "Unsere Daten zeigen aber zum ersten Mal, wie sich die Verdunstung in diesem Zeitraum verändert hat", sagt Markus Reichstein, Forschungsgruppenleiter am Max-Planck-Institut für Biogeochemie in Jena und Koordinator der Studie.
Zunächst nahm die Menge des auf der globalen Landoberfläche verdampften Wassers bis 1997 jährlich um etwa 120 Kubikkilometer zu, mehr als das doppelte des Bodensees. Dieser Trend schwächte sich danach allerdings deutlich ab. "Da sich gleichzeitig die Temperatur der Atmosphäre leicht erhöhte, hat uns die Abschwächung der zunehmenden Verdunstung sehr überrascht", sagt Martin Jung, der die Daten am Jenaer Max-Planck-Institut maßgeblich ausgewertet hat. "Denn wärmere Luft kann bekanntermaßen mehr Feuchtigkeit aufnehmen." Klimaforscher gingen daher bislang davon aus, dass auf der wärmer werdenden Erde mehr Wasser verdampft. Doch möglicherweise gilt das nur regional begrenzt. Denn vor allem in Australien, Ostafrika und Südamerika geschah zwischen 1998 und 2008 genau das Gegenteil. Dort verdampfte deutlich weniger Wasser. Diesen starken Rückgang konnte auch die leicht erhöhte Verdunstung in China und Indien nicht wettmachen.
"Wie viel Wasser auf der Südhalbkugel verdunstet wurde, hing offenbar nicht davon ab, wie viel die Atmosphäre aufnehmen konnte, sondern wie viel Wasser im Boden zur Verfügung stand", so Jung. Und das wurde in den elf Jahren vor 2008 immer weniger. "Warum der Boden dort zunehmend trockener wird, wissen wir noch nicht", sagt der Klimaforscher. Er warnt aber ausdrücklich davor, darin schon Auswirkungen des Klimawandels zu sehen: Möglicherweise handele es sich nur um eine natürliche Schwankung, die sich bislang nicht erklären lässt. Auch periodisch auftretende Klimaphänomene wie etwa El Niño - eine alle paar Jahre auftretende warme Meeresströmung im Südpazifik - könnten den globalen Wasserkreislauf so durcheinander bringen, dass manche Gegenden der Welt vorübergehend trockener werden. "Um festzustellen, ob der Trend anhält, müssen wir den Wasserkreislauf deutlich länger beobachten", sagt Reichstein.
Sollte sich die Entwicklung tatsächlich fortsetzen, könnte das gravierende Folgen haben. Wie kräftig Pflanzen Photosynthese betreiben, und folglich wie üppig sie wachsen, hängt vor allem davon ab, ob sie ausreichend mit Wasser versorgt sind. Falls der Boden auf der Südhalbkugel weiter austrocknen würde, wäre das nicht nur für die ohnehin schwierige Landwirtschaft dieser Gebiete verheerend. Durch das verringerte Pflanzenwachstum und das reduzierte Wasserangebot würde auch weniger Kohlendioxid durch Photosynthese gebunden und somit der Treibhauseffekt weiter verstärkt. Da außerdem die kühlende Verdunstung reduziert wäre, könnte es regional zu einer weiteren Erwärmung der Landoberfläche kommen.
Dies müssen die zukünftigen Messungen zeigen. Denn die Methode der Fluxnet-Forscher ermöglicht es erstmals, die Entwicklung mit hoher Präzision zu verfolgen. "Wir lassen ausschließlich die Messdaten sprechen, wenn wir globale Kreisläufe wie etwa den Wasserzyklus untersuchen", sagt Reichstein. Die Forscher gehen also nicht wie früher üblich von hypothetischen Klimamodellen aus, um einzelne Messwerte zu interpretieren. Erstmalig lassen sie die Messwerte mit ausgefeilten Algorithmen, die aus der Forschung zur künstlichen Intelligenz stammen, selbst ein Modell erzeugen, welches auch nicht-lineare Zusammenhänge beschreiben kann. Als Datengrundlage haben die Forscher an mehr als 250 weltweiten Stationen zwischen 1997 und 2006 exakt aufgezeichnet, wie viel Wasser unter verschiedenen Klima- und Vegetationsbedingung verdunstet ist und dann mit Satellitendaten hochgerechnet.
"Wir wollen genau wissen, wie viel Wasser, Kohlendioxid und andere Stoffe der Boden und die Vegetation abgeben und aufnehmen und wie diese Kreisläufe mit der Erderwärmung zusammenhängen", sagt Reichstein. "Globale Messnetzwerke wie Fluxnet sowie Satellitendaten sind dafür auch in der Zukunft unverzichtbar und sollten klassische Klimabeobachtungen, etwa der Temperatur, verstärkt ergänzen." Denn nur dann können die Forscher die Entwicklung und den Beitrag einzelner Komponenten zum Gesamtklima erkennen und gezielte Maßnahmen empfehlen, um den Klimawandel zu begrenzen.
Originalveröffentlichung: Martin Jung et al.; "Recent decline in the global land evapotranspiration trend due to limited moisture supply"; Nature advance online publication 10 October 2010
Weitere News aus dem Ressort Wissenschaft
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Synthese
Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.
Themenwelt Synthese
Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.