Einatomige Kohlenstoffschichten ermöglichen gleitende Bewegungen um millionstel Millimeter

23.11.2010 - Deutschland

Die Bauteile in der Halbleiterelektronik, Medizintechnik und Photovoltaik sind heute winzig klein. Entsprechend genau müssen sich etwa optische Linsen oder Messfühler in den Geräten bewegen. Üblich sind mittlerweile Techniken hin zu immer kleineren Skalen bis in den Nanometer-Bereich. Im Verbundprojekt TIGeR untersuchen Spezialisten des INM - Leibniz-Institut für Neue Materialien, der Universität des Saarlandes, des Fraunhofer-Instituts für Werkstoffmechanik sowie des Karlsruher Instituts für Technologie, wie einatomige Schichten aus Kohlenstoff das Reibverhalten von Materialien vermindern oder beeinflussen und so künftig noch genauere Bewegungen im Nanometer-Bereich ermöglichen.

Das Projekt startete Mitte Oktober und wird im Rahmen des WING Programms des Bundesministeriums für Bildung und Forschung (BMBF) gefördert. Das Forschungsvorhaben wird von einem industriellen Beirat begleitet.

„Stellen Sie sich vor, sie wollen Ihren Schlafzimmerschrank exakt an eine Nadelspitze heranschieben ohne diese zu berühren. Wenn man mit viel Kraft die Reibung überwunden hat, rutscht der Schrank meist zu weit, womöglich bis zur nächsten Ritze in den Dielen und jedenfalls über das Ziel hinaus. Sie müssen einen Weg finden, über den Boden ohne Ruckeln zu gleiten.“ So erklärt Roland Bennewitz, Leiter des Projektes TIGeR das Forschungsvorhaben. Allerdings sind die Schlafzimmerschränke nur wenige Zentimeter groß und das Gleiten erfolgt über eine einatomige Lage aus Kohlenstoffatomen, dem sogenannten Graphen. Heutige Analysen-, Sensor- und Messtechniken und die dazugehörige Automatisierung brauchen hochpräzise, reibungsarme Lagerungen. Auch optische Technologien funktionieren nur dann akkurat, wenn Linsen oder andere optische Elemente nanometergenau, also ein Millionstel Millimeter bewegt werden können. Ein stabiler, alltagstauglicher Film aus einer Lage Kohlenstoffatomen ist daher das Ziel des Forschungsprojektes. Der Film soll nicht verschleißen und kaum reiben; gleitende Bewegungen sollen möglich werden.

Dazu werden Graphenschichten auf unterschiedlichen Materialien wie Siliziumcarbid, Metallen oder keramischen Werkstoffen aufgebracht und Reibung und Verschleiß unter verschiedenen Bedingungen untersucht, zum Beispiel im Ultrahochvakuum oder unter Umgebungsbedingungen. Ein wesentlicher Aspekt des Verbundprojektes liegt in der Analyse der präparierten Filme sowie in der computergestützten Simulation dieser atomaren Schichten. Dazu trägt jeder Verbundpartner mit seiner ausgewiesenen Fachexpertise bei. „Nur durch interdisziplinäre Zusammenarbeit aller vier Institutionen können wir die Vorgänge wirklich verstehen und Schichten entwickeln, die die besonderen Erfordernisse für zukunftsfähige Werkstoffe erfüllen“, erklärt Frank Müller von der Universität des Saarlandes, „was wirklich am Markt gebraucht wird, weiß unser industrieller Beirat am besten“.

Während seine Arbeitsgruppe vor allem Graphen auf kristallinen Metalloberflächen erzeugen wird, widmen sich das INM - Leibniz-Institut für Neue Materialien und das Karlsruher Institut für Technologie KIT der Analyse der präparierten Schichten mithilfe der Reibungskraftmikroskopie und der sogenannten Tribometerexperimente. Das Fraunhofer Institut für Werkstoffmechanik IWM beleuchtet die Mechanismen für Wachstum und Reibung von Graphen auf Materialien durch die computergestützte atomistische Simulation von Modellsystemen.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...