Simulation des Tunneleffekts für große Moleküle
Durch Abkürzung schneller zum Ziel
Universität Stuttgart/Johannes Kästner
In der traditionellen Quantenchemie werden nur die Elektronen quantenmechanisch beschrieben, Atome jedoch klassisch. Mit dem neuen „Harmonic Quantum Transition State Theory“ (HQTST)-Verfahren können die Stuttgarter sowohl Elektronen als auch Atome quantenmechanisch effizient beschreiben. Übersetzt heißt die Methode „Harmonische Quantenübertragungszustands-Theorie“. Für die Simulation zogen die Wissenschaftler eine bereits 30 Jahre alte Theorie heran und entwickelten einen verbesserten Algorithmus. Dadurch werden Simulationen von Modellen realistischer Größe möglich, die zudem viel schneller Ergebnisse liefern. Die theoretischen Berechnungen haben im Gegensatz zum Experiment den Vorteil, dass die Chemiker den Tunneleffekt beliebig ein- und ausschalten können, um seine Wirkung zu erforschen.´
Zurzeit untersucht Kästners Team in dem von der Landesstiftung Baden-Württemberg geförderten Projekt „Berechnung der Tunnelrate bei chemischen Reaktionen in großen Systemen“ den Tunneleffekt von Atomen in biochemischen Prozessen. Zusammen mit den Projektpartnern im Exzellenzcluster SimTech der Universität Stuttgart und an anderen Universitäten im In- und Ausland wenden die Stuttgarter Wissenschaftler beispielsweise die HQTST-Methode an, um zu untersuchen wie das Enzym Glutamat-Mutase arbeitet. Das Enzym überträgt Wasserstoffatome auf Substrate. Die Chemiker nehmen an, dass dies erst durch den Tunneleffekt effizient geschieht. Erste Ergebnisse des Projekts deuten darauf hin, dass der Tunneleffekt tatsächlich die Enzymreaktion beschleunigt.
Mit der gleichen Methode haben die Stuttgarter Wissenschaftler bereits gezeigt, wie sich Wasserstoffatome im Weltraum zu Wasserstoffmolekülen verbinden können. Diese Reaktion läuft nur dank des Tunneleffekts effizient genug ab, um die experimentell gemessene Konzentration von Wasserstoffmolekülen zu erklären. Bei Temperaturen unter -200 Grad Celsius, die in interstellaren Wolken vorherrschen, würde die Reaktion ohne den Tunneleffekt länger dauern als das Weltall existiert – ein Ding der Unmöglichkeit. Astronomische Messungen können zwar feststellen, welche Moleküle im Weltraum vorhanden sind, aber nicht wie diese gebildet werden. Die Simulation der Stuttgarter bringt Licht in diesen Prozess.
Meistgelesene News
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.