Künstliche Zellen: Ionenaustausch führt zu komplexen Zellsystemen mit anorganischen Membranen
Unser Körper besteht aus einzelnen Organen, die aus Zellen aufgebaut sind, die wiederum eine Reihe separater Organellen enthalten. Eine biologische Funktion kann nicht aufrecht erhalten werden, wenn es keine voneinander abgeteilten Kompartimente gibt. Kompartimente sind aber auch in der Chemie von Bedeutung. In der Zeitschrift Angewandte Chemie stellt ein Team um Leroy Cronin von der Universität Glasgow (UK) nun eine neue Methode zur einfachen Herstellung anorganischer chemischer Zellen vor, so genannter iCHELLs, mit der sogar in Zellen eingebettete Zellen leicht zugänglich sind.
Normalerweise werden die Membranen künstlicher Kompartimente aus hochmolekularen Polymeren durch Aggregation auf einer Oberfläche hergestellt. Die Membranen der iCHELLS entstehen dagegen aus niedermolekularen Bausteinen an der Berührungsstelle zweier wässriger Lösungen. Dazu injiziert man einfach eine wässrige Lösung in eine zweite. Lösung 1 enthält Polyoxometallat-Cluster, winzige „Häufchen“ aus mehreren Übergangsmetall-, Sauerstoff- und manchmal weiteren Atomen. Die Forscher setzten z.B. ein Phosphowolframat ein, einen negativ geladenen Cluster, bei dem ein Phosphoratom von zwölf Wolfram- und 40 Sauerstoffatomen umgeben ist. Als Gegenionen dienen kleine positiv geladene Ionen, wie Protonen oder Natriumionen. Lösung 2 enthält eine Verbindung aus großen positiv geladenen organischen Ionen, z.B. aromatischen Ringsystemen, und kleinen negativ geladenen Gegenionen. Kommen die beiden Lösungen miteinander in Kontakt, betreiben die Ionenpaare sogleich einen Partnertausch: Während die beiden kleinen Partner in Lösung bleiben, tun sich die beiden großen Ionen zusammen und aggregieren zu einer dünnen Membran, da sie als Paar nicht mehr löslich sind. Eine membranumschlossene Zelle entsteht.
Über die Wahl der Ionen lassen sich nicht nur Dicke und Durchlässigkeit der Membran variieren, sie kann auch mit Funktionalitäten ausgestattet werden. So können Bausteine gewählt werden, die z.B. chemische Reaktionen katalysieren oder Zielmoleküle spezifisch erkennen. Mithilfe mikrofluidischer Systeme (Chips mit winzigen flüssigkeitsgefüllten Kanälchen) lassen sich die Zellen leicht in großen Mengen herstellen, was Voraussetzung für einen technischen Einsatz wäre. Zu den denkbaren Anwendungen zählen beispielsweise eingekapselte Katalysatoren: Die Membran könnte selektiv das Substrat durchlassen, das reagieren soll.
Auch komplexere Zellensysteme sind zugänglich: Einfach eine weitere Lösung eines geeigneten Ions in eine Zelle injizieren – und schon bildet sich eine „Zelle in der Zelle“. Solche Systeme könnten als „Gefäße“ für mehrstufige Reaktionen dienen. Das große Ziel ist aber die Herstellung künstlicher chemischer Zellen mit Eigenschaften, die denen lebender Systeme ähneln. Die Wissenschaftler erhoffen sich Hinweise, wie sich das Leben vor Milliarden Jahren aus einer „anorganischen Welt“ entwickeln konnte, und ob es möglich ist, iCHELLs als Plattform für die Entwicklung einer nicht-organischen „anorganischen Biologie“ im Labor zu verwenden.
Originalveröffentlichung
Diese Produkte könnten Sie interessieren

Anopore™ von Cytiva
Präzise Filtration leicht gemacht mit Anopore anorganischen Membranen
Die Aluminiumoxid-Filtermembran, die die Reinheit oder Ausbeute Ihres Analyten erhöhen kann

Hahnemühle LifeScience Katalog Industrie & Labor von Hahnemühle
Große Vielfalt an Filterpapieren für alle Labor- und industrielle Anwendungen
Filtrationslösungen im Bereich Life Sciences, Chemie und Pharma

Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.