Das geteilte Unteilbare
Barbara Frommann/Uni Bonn
Das Atom hat eine gespaltene Persönlichkeit
Die fragilen Quanteneffekte können nur bei niedrigsten Temperaturen und sorgsamer Handhabung auftreten. Eine Methode ist, Cäsiumatome mit Lasern enorm stark zu kühlen – bis auf zehn Millionstel Grad über dem absoluten Nullpunkt – und dann mit einem anderen Laser festzuhalten. Dieser Laserstrahl ist der Schlüssel für die Teilung des Atoms: Das Kunststück gelingt, weil Atome einen Spin besitzen, der zwei unterschiedliche Ausrichtungen haben kann. Je nach Ausrichtung lässt sich das Atom vom Laser wie mit einem Förderband nach links oder rechts fahren. Der Kniff liegt darin, dass der Spin des Atoms in beiden Ausrichtungen gleichzeitig sein kann. Wird das Atom gleichzeitig nach links und rechts gefahren, kommt es zur Teilung. „Das Atom hat sozusagen eine gespaltene Persönlichkeit – es ist halb links und halb rechts und doch immer ein ganzes“, sagt Andreas Steffen, der Erstautor der Veröffentlichung.
Die Teile vergleichen ihre „Erlebnisse“
Direkt sehen kann man die Teilung aber nicht: Leuchtet man das Atom an, um etwa ein Foto zu machen, zerbricht die Teilung sofort. Man sieht dann das Atom in mehreren Bildern mal links, mal rechts – nie an beiden Orten. Der Nachweis der Teilung gelingt dennoch, indem man das Atom wieder zusammenfügt. Auf diese Weise kann man aus einzelnen Atomen ein Interferometer bauen, dass etwa zum präzisen Messen von äußeren Einflüssen dient. Die Atome werden dabei geteilt, auseinander bewegt und wieder zusammenfügt. Die „Erlebnisse“ der beiden Hälften werden dann verglichen. Zum Beispiel werden Unterschiede der Magnetfelder zwischen den zwei Positionen oder Beschleunigungen sichtbar, da sie sich in den quantenmechanischen Zustand des Atoms einprägen. Dieses Prinzip wurde bereits eingesetzt, um Kräfte wie die Erdbeschleunigung sehr genau zu vermessen.
Quantensysteme auf der Werkbank?
Den Bonner Forschern geht es aber um etwas anderes, nämlich die Simulation von komplexen Quantensystemen. Viele Physiker hoffen seit langem, mit modernsten Supercomputern schwer erfassbare Phänomene wie so genannte topologische Isolatoren oder die Photosynthese der Pflanzen mit kleinen Quantensystemen nachstellen zu können. Die ersten Schritte zu solchen Simulatoren könnten darin bestehen, die Bewegung von Elektronen in Festkörpern nachzubilden und dadurch Erkenntnisse für innovative elektronische Geräte zu gewinnen. Beispiele sind die Diracbewegung von Elektronen in einer einlagigen Graphenschicht oder die Entstehung künstlicher Moleküle aus wechselwirkenden Teilchen. Hierfür müssen aber einzelne Atome nicht nur gut kontrolliert, sondern auch quantenmechanisch verknüpft werden, da die Crux gerade in dem Gebilde aus vielen Quantenobjekten liegt.
Ein Zahnrad im Getriebe
„Ein Atom ist für uns ein einzelnes Zahnrad, gut kontrolliert und geölt“, sagt Dr. Andrea Alberti, der Teamleiter des Bonner Experiments. „Man kann mit Zahnrädern Rechenmaschinen von beachtlicher Leistung bauen, aber dafür müssen sie ineinandergreifen.“ Hier liegt die eigentlich Bedeutung der Teilung von Atomen: Weil die beiden Hälften wieder zusammengefügt werden, können sie bei der Teilung mit benachbarten Atomen links und rechts durch Berührung Kontakt herstellen und diesen anschließend austauschen. So kann ein kleines Netzwerk von Atomen entstehen, mit dem man wie in einem Computerspeicher reale Systeme nachstellen und kontrolliert manipulieren könnte – ihre Geheimnisse wären dann besser zugänglich. Die Wissenschaftler sind überzeugt, dass das ganze Potenzial dieser präzisen Kontrolle einzelner Atome sich mit der Zeit offenbaren wird.