Quantenbits elektronisch auslesen
Mittels einfacher Elektroden lässt sich der quantenmechanische Zustand eines einzelnen Atomkerns steuern und bestimmen
Quantencomputer versprechen Rechengeschwindigkeiten, die weit jenseits der Geschwindigkeit heutiger Computer liegen. Da sie Quanteneffekte nutzen würden, sind sie aber auch anfällig für Störungen von außen und der Informationsfluss in und aus dem System ist ein kritischer Punkt. Nun haben Forscher vom KIT mit Partnern aus Grenoble und Straßburg den Quantenzustand eines Atoms mittels Elektroden direkt ausgelesen. Über die stabile Schnittstelle von klassischer und Quantenwelt berichten sie nun in der Zeitschrift Nature.

Mittels Goldelektroden kontaktiertes TbPc2-Molekül: Elektronen (rot) hüpfen auf das Molekül und lesen Elektronenspin (orange) und Kernspin (grün) des Terbiums aus.
C. Grupe, KIT
„Normalerweise verändert jeder Kontakt mit der Außenwelt die Informationen in einem quantenmechanischen System völlig unkontrolliert“, erläutert Professor Mario Ruben vom Karlsruher Institut für Technologie (KIT). „Wir müssen den quantenmechanischen Zustand also einerseits stabil und abgeschirmt halten, aber andererseits irgendwann die Information kontrolliert auslesen, um sie nutzen zu können.“
Ein Weg aus dem Dilemma scheinen magnetische Molekülkomplexe zu sein. In ihrer Mitte liegt ein Metallatom, das über ein ausgeprägtes magnetisches Moment, einen Spin, verfügt. Es ist umgeben von organischen Molekülen, die es abschirmen. „Bei der Synthese der Schutzhülle können wir recht exakt festlegen, wie viel das Metallatom von der Außenwelt sieht“, erklärt Ruben den Kniff seiner Forschung.
In der vorliegenden Studie wurde das Metallatom Terbium mit einem Mantel aus rund 100 Kohlenstoff-, Stickstoff- und Wasserstoffatomen umgeben und anschließend zwischen nanometergroße, elektrische Kontakte platziert. Aufgrund der Eigenschaften des Moleküls wirkten die Elektroden nach außen ähnlich wie die drei Kanäle eines Transistors. Die elektrische Spannung der mittleren Elektrode beeinflusste den Strom durch die anderen beiden. Dies wurde genutzt, um den Arbeitspunkt einzustellen. Dann wurde das Molekül verschiedenen sich ändernden Magnetfeldern ausgesetzt und das Umspringen des Spins anhand der Ausschläge in der Stromkurve beobachtet. „Mittels der Messung des Stromflusses konnten wir zeigen, dass der Kernspin des Metallatoms bis zu 20 Sekunden stabil ist, bis er umschlägt“, sagt Ruben. „Für quantenmechanische Vorgänge ist dies eine Ewigkeit.“
„Diese Ergebnisse werden der Spintronik und dem Quantencomputing neue Impulse geben“, ist sich Ruben sicher. Die Spintronik nutzt den magnetischen Spin einzelner Teilchen für die Informationsverarbeitung. Das Wort beschreibt die Symbiose von Spin und Elektronik. Quantencomputer nutzen quantenmechanische Effekte, wie etwa Verschränkung und Superposition von Spins, die es erlauben, Algorithmen parallel mit hoher Geschwindigkeit durchzuführen.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft

Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.