Weniger Wolken durch mehr Kohlendioxid
Ein bislang unbekannter Rückkopplungsmechanismus zwischen Vegetation und Wolkenbildung könnte den Klimawandel verstärken
© Bart van Stratum
„Wir wollten wissen, wie der absehbare CO2-Anstieg auf die Wolkenbildung in gemäßigten Klimazonen wirkt und welche Rolle die Vegetation dabei spielt“, sagte Jordi Vilà-Guerau de Arellano von der Universität Wageningen in den Niederlanden. Zusammen mit seinen Kollegen von den Max-Planck-Instituten für Chemie und für Meteorologie nutzte der Geophysiker erstmals ein Computermodell, das sowohl den Boden, den Wasserkreislauf, die Atmosphäre als auch die Wachstumsprozesse der Pflanzen berücksichtigt. Die Modellergebnisse unterstreichen, dass lokale und täglich variable Prozesse die Atmosphäre durch Turbulenzen in großem Maßstab beeinflussen können.
Für ihre Analyse simulierten die Wissenschaftler drei Szenarien: die Verdopplung des atmosphärischen CO2-Gehalts von heute 0,038 Prozent auf 0,075 Prozent, die Erhöhung der globalen Durchschnittstemperatur um zwei Grad Celsius und die Kombination aus beidem. Alle drei Szenarien basieren auf den Prognosen des Weltklimarats IPCC und wurden für Bedingungen ermittelt, wie sie im Jahr 2100 zu erwarten sind, und mit den Werten von 2003 verglichen.
Die Forschergruppe stellte dabei fest, dass einige Austauschprozesse zwischen Vegetation, Boden und Atmosphäre stärker mit dem CO2-Anstieg und dem Klimawandel wechselwirken als erwartet. Die Verdopplung des atmosphärischen CO2-Gehalts startet eine Kaskade von Prozessen, an deren Anfang eine Reaktion des pflanzlichen Stoffwechsels auf die höhere CO2-Konzentration steht. Die Ursache der Kettenreaktion liegt darin, dass Pflanzen durch das Öffnen und Schließen der Spaltöffnungen regeln, wie viel Wasserdampf und Kohlendioxid sie mit der Atmosphäre austauschen.
Bei größerem CO2-Angebot schließen Pflanzen früher ihre Poren
Die Kaskade beginnt harmlos: Im Szenario eines verdoppelten CO2-Gehalts schließen sich früher die winzigen Poren, die sich milliardenfach an der Unterseite der Pflanzenblätter befinden, da die Pflanzen schneller ausreichend Kohlendioxid für die Fotosynthese aufgenommen haben. Das hat jedoch zur Folge, dass die Pflanzen auch weniger Feuchtigkeit nach außen abgeben und insgesamt weniger Wasserdampf in die Atmosphäre gelangt.
Dadurch wiederum entstehen weniger Cumulus-Wolken, so dass sich die Erdoberfläche stärker erwärmt, weil mehr Sonnenlicht direkt auf die Oberfläche trifft und nicht durch Wolken gestreut wird. Die wärmere Luft erzeugt nun mehr Turbulenzen in der bodennahen Atmosphäre, wodurch mehr Wärme aber wenige Feuchtigkeit transportiert wird. Erde und Atmosphäre erwärmen sich durch die Reaktion der Pflanzen auf den erhöhten CO2-Gehalt zusätzlich.
Damit haben die Forscher eine weitere Rückkopplung im Klimasystem, einen sich selbst verstärkenden Prozess, ausfindig gemacht. Beim zweiten Szenario, in dem sich die Atmosphäre um zwei Grad Celsius erwärmt, ohne dass sich die CO2-Konzentration erhöht, entsteht diese Rückkopplung nicht.
Die Verdunstung wird um 15 Prozent abnehmen
Als Nächstes simulierten die Forscher ein drittes Szenario, in dem sie sowohl den CO2-Gehalt als auch die Temperatur erhöhten. „Die Effekte, die sich dabei positiv auf die Wolkenbildung auswirken, etwa die Fähigkeit der wärmeren Atmosphäre, mehr Wasser aufzunehmen oder der Zuwachs an Biomasse, können die Abnahme der Wolkenbildung nur teilweise kompensieren“ sagte Jordi Vilà-Guerau de Arellano. „Die Verdunstung wird um 15 Prozent abnehmen. Die atmosphärische Grenzschicht trocknet aus, dadurch können sich weniger Wolken bilden“, ergänzt Jos Lelieveld, Direktor am Max-Planck-Institut für Chemie in Mainz.
Die Studie zeigt, dass die verminderte Verdunstung von Pflanzen direkte Auswirkungen auf die turbulenten Austauschprozesse zwischen der bodennahen atmosphärischen Grenzschicht und der höhergelegenen Schicht der freien Atmosphäre hat, und damit die Wolkenbildung verändert.
Chiel van Heerwaarden vom Max-Planck-Institut für Meteorologie sagt: „Die Berechnungen belegen eine wichtige Rückkopplung der Vegetation mit physikalischen Klimaprozessen.“ Zukünftig wollen die Forscher ihre Analyse auf das Amazonasgebiet ausdehnen, um zu prüfen, wie sich steigende CO2-Werte in tropischen Regionen auswirken.
Originalveröffentlichung
Jordi Vilà-Guerau de Arellano, Chiel C. van Heerwaarden und Jos Lelieveld; Modelled suppression of boundary-layer clouds by plants in a CO2-rich atmosphere; Nature Geoscience, 2. September 2012