Luftig aber durstig
Ultraleichte, flexible, feuerbeständige Kohlenstoff-Nanofaser-Aerogele aus bakterieller Cellulose
Kohlenstoff-Aerogele sind aufgrund ihrer einzigartigen Eigenschaften – geringe Dichte, hohe Porosität, hohe spezifische Oberfläche sowie hohe elektrischer Leitfähigkeit – vielversprechende neue Materialien, beispielsweise als Träger für Katalysatoren, Elektroden für Superkondensatoren, Adsorbentien und Gassensoren, aber auch für künstliche Muskeln. Was noch gesucht wird, ist eine einfache, wirtschaftliche und umweltfreundliche Methode zur Herstellung dieser attraktiven Leichtgewichte. Das Team um Shu-Hong Yu von der University of Science and Technology of China setzt auf eine Produktion aus Biomasse. Die Wahl fiel auf bakterielle Cellulose, eine gängige, kostengünstige, nichttoxische Biomasse, die aus einem verwobenen Netzwerk von Cellulose-Nanofasern besteht und problemlos großtechnisch durch eine mikrobielle Fermentation hergestellt werden kann.
Die Forscher schnitten kleine Stückchen der verwobenen Cellulose-Nanofasern zurecht. Diese wurden gefriergetrocknet und anschließend bei 1300 °C unter Argon pyrolisiert. Die Cellulose wird dabei in graphitischen Kohlenstoff umgewandelt, die Dichte nimmt ab, aber die Fasergeflecht-Struktur bleibt erhalten. So entsteht ein schwarzes, ultraleichtes, mechanisch stabiles, Aerogel. Da es porös und stark hydrophob ist, kann es organische Lösungsmittel und Öle adsorbieren – bis zum 106- bis 312fachen seines Eigengewichts. Aus einem Öl-Wasser-Gemisch saugt es das Öl hocheffizient und selektiv auf, das reine Wasser bleibt zurück. Damit ist das neue Aerogel ein idealer Kandidat zur Bekämpfung der Ölpest oder zum Aufsaugen unpolarer industrieller Schadstoffe. Die aufgenommenen Substanzen können durch Destillation oder Verbrennen leicht wieder entfernt und das Aerogel auf diese Weise mehrfach verwendet werden.
Bemerkenswert ist die außerordentliche Hitze- und Feuerbeständigkeit des Materials, das sich auch nach mehrmaligem Behandeln mit einer Brenner-Flamme weder in seiner Form noch in seiner inneren dreidimensionalen Porenstruktur verändert.
Die hohe elektrische Leitfähigkeit des Aerogels macht zudem elektronische Anwendungen denkbar. Das Material ist dabei mechanisch hochflexibel. Es lässt sich auf etwa 10 % seines Volumens zusammenpressen und dehnt sich anschließend wieder fast in die ursprüngliche Form aus. Die Leitfähigkeit nimmt mit zunehmender Kompression fast linear ab. Das Aerogel könnte daher als Drucksensor eingesetzt werden.
Originalveröffentlichung
Meistgelesene News
Originalveröffentlichung
Shu-Hong Yu et al.; "Ultralight, Flexible, and Fire-Resistant Carbon Nanofiber Aerogels from Bacterial Cellulose"; Angewandte Chemie.
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.