Rund zwei Millionen Euro für die Kieler Nanowissenschaften
Physikerinnen und Physiker der Uni Kiel entwickeln Instrumente am DESY
DESY 2009
CAU
CAU
Die Projekte, mit denen das Verhalten von Elektronen und Molekülen an Oberflächen untersucht und simuliert werden wird, sind im Ruprecht-Haensel-Labor angesiedelt. Die gemeinsame Einrichtung von CAU und DESY bündelt die instrumentellen und methodischen Entwicklungen und stellt die Techniken internationalen Kooperationspartnern zur Verfügung. Sechs zusätzliche Wissenschaftlerinnen und Wissenschaftler kann die Uni Kiel für die dreijährige Projektlaufzeit einstellen.
CAU-Präsident Professor Gerhard Fouquet gratuliert seinen Kolleginnen und Kollegen zur Förderung durch das BMBF: „Ein weiterer großer Erfolg für den Forschungsschwerpunkt ‚Nanowissenschaften und Oberflächenforschung’ an der CAU. Das Ministerium würdigt mit der Förderung das hohe wissenschaftliche Know-how von Kieler Forschenden, die sich mit solchen ultrakleinen Strukturen beschäftigen.“ Im Schwerpunkt arbeiten Wissenschaftlerinnen und Wissenschaftler aus der Mathematisch-Naturwissenschaftlichen, der Technischen und Medizinischen Fakultät gemeinsam an einem tieferen Verständnis von Systemen auf der Nanometerskala.
"Mit den neuen Verbundprojekten wird die enge Zusammenarbeit Kieler und Hamburger Forscher weiter gestärkt", betont DESY-Forschungsdirektor Professor Edgar Weckert. "DESYs Röntgenquellen FLASH und PETRA III sind die idealen Supermikroskope, um Strukturen und Prozesse in der Nanowelt zu beobachten und zu verstehen. Die nun bewilligten Vorhaben werden die Möglichkeiten zur Erkundung des Nanokosmos in hervorragender Weise erweitern.“
Die Projekte im Einzelnen:
„Sub-mikrometer-Fokussierungs- und Tieftemperatur-Probenscaneinheit für den spin- und impulsauflösenden Photoemissions-Messplatz ASPHERE III an der XUV-Beamline bei PETRA III"
Projektantrag von Prof. Dr. Lutz Kipp und PD Dr. Kai Rossnagel, Institut für Experimentelle und Angewandte Physik
Kooperation mit der Universität Würzburg und dem DESY
Bewilligte Fördersumme: rund 550.000 Euro
Das Ziel des Projekts ist es, das hocheffiziente impuls- und spinauflösende Photoelektronen-Spektrometer ASPHERE III mit mikroskopischen Fähigkeiten zu erweitern. „ASPHERE III wird es uns zukünftig ermöglichen, das Verhalten von Elektronen mit einer Ortsauflösung von einigen hundert Nanometern zu untersuchen. Damit entsteht ein weltweit einzigartiges Nano-Spektroskop, welches zum Beispiel die chemische Zusammensetzung, aber auch die elektronischen und magnetischen Eigenschaften kleinster Strukturen zugänglich macht“, erklärt Dr. Kai Roßnagel begeistert, der zusammen mit Professor Lutz Kipp die Förderung des Projekts nach Kiel geholt hat.
Das Vorhaben erschließt erweiterte Nutzungsmöglichkeiten mit hoher räumlicher Auflösung im Grenzbereich zwischen elektronischen und magnetischen Volumen- und Oberflächeneigenschaften verschiedenster Proben. Kleinste Proben mit unterschiedlicher stofflicher Zusammensetzung, mikroskopische Inseln auf Oberflächen beziehungsweise Einschlüsse in Volumenmaterialien wie Kristalle oder elektronische/magnetische phasenseparierte Systeme können untersucht werden. Die Technik wird weitreichende neue Forschungsperspektiven für Nutzerinnen und Nutzer aus vielen Bereichen eröffnen, insbesondere den Nanowissenschaften, der Oberflächen- und Festkörperphysik, den Materialwissenschaften, der Halbleiter-Technologie und der Chemie.
„Ultraschnelle Röntgenstreuuntersuchungen an Flüssigkeitsgrenzflächen“
Projektantrag von Prof. Dr. Olaf Magnussen und Dr. Bridget Murphy, Institut für Experimentelle und Angewandte Physik
Kooperation mit den Universitäten Göttingen und Dortmund
Bewilligte Fördersumme: rund 1 Million Euro
In diesem Projekt sollen Messinstrumente und Methoden entwickelt werden, mit denen die Bewegung von Molekülen an Flüssigkeitsoberflächen erstmals direkt experimentell untersucht werden kann. Dazu werden die Moleküle mit einem Laserpuls angeregt. Die daraus entstehenden Veränderungen der Oberflächenstruktur werden über Streuung zeitversetzter, ultrakurzer Röntgenpulse abgefragt.
In das LISA Röntgendiffraktometer, das die Arbeitsgruppe in den letzten Jahren am Teilchenbeschleuniger PETRA III am DESY aufgebaut hat, wird für solche Experimente ein leistungsstarker Femtosekundenlaser integriert. „LISA wird damit zu einem weltweit einmaligen Instrument mit dem Grenzflächen von Flüssigkeiten auf einer Skala von Milliardstel Metern und mit einer Zeitauflösung von Billionstel Sekunden untersucht werden können“, erklärt Dr. Bridget Murphy, die das Projekt gemeinsam mit Professor Olaf Magnussen leitet.
Solche Messungen können wesentliche neue Einblicke in viele wichtige natürliche wie auch technologische Vorgänge an Flüssigkeitsgrenzflächen liefern. Sie würden beispielsweise helfen, die Umordnung der Flüssigkeit während chemischer Reaktionen an der Grenzfläche, die Dynamik von biologischen Membranen, die ungewöhnliche Oberflächenstruktur flüssiger Metalle oder den Abbau von Strahlungsprodukten an Flüssigkeitsgrenzflächen besser zu verstehen. Grundlegenden Fragen zur Physik und Chemie flüssiger Grenzflächen können mit dem neuen Instrument beantwortet werden, was zu neuen Anwendungen in Material-, Umwelt- und Lebenswissenschaften führen kann.
„Zeitaufgelöste Photoionisation am Freie-Elektronen-Laser – nichtlineare Effekte, Korrelationen und Kohärenz"
Projektantrag von Prof. Dr. Michael Bonitz, Institut für Theoretische Physik und Astrophysik
Bewilligte Fördersumme: rund 420.000 Euro
Die Arbeitsgruppe von Professor Michael Bonitz entwickelt mit den Projektmitteln Computersimulationen und ergänzende analytische Werkzeuge. Sie sollen die Experimente am Freie-Elektronen-Laser FLASH beschreiben sowie wichtige Vorhersagen für Untersuchungen an geplanten und im Bau befindlichen Röntgenquellen, wie FLASH II und dem European X-FEL, liefern.
Im Zentrum steht dabei die Wechselwirkung hochenergetischer elektromagnetischer Strahlung mit Atomen und kleinen Molekülen, die zu starker Anregung und Ionisation führt. Die daraus entstehende ultraschnelle Dynamik der Elektronen und ihre Wechselwirkung untereinander interessiert die Forschenden besonders. Denn daraus lassen sich grundlegende Eigenschaften von Atomen und Molekülen akkurat und zeitaufgelöst berechnen.
Mit dem Projekt gewinnen die Wissenschaftlerinnen und Wissenschaftler, die eng mit experimentell arbeitenden Kolleginnen und Kollegen der Universität Hamburg zusammenarbeiten, neue Erkenntnisse in der zeitaufgelösten Atom- und Molekülphysik. Gleichzeitig erweitern die Techniken die Anwendungsmöglichkeiten der Strahlungsquellen am DESY und an anderen Standorten weltweit.