TU Wien entwickelt Licht-Transistor
TU Wien
TU Wien
Gedrehtes Licht – der Faraday-Effekt
Gewisse Materialien haben die Eigenschaft, die Schwingungsrichtung von Licht zu drehen, wenn sie einem Magnetfeld ausgesetzt werden – man spricht vom Faraday-Effekt. Normalerweise ist dieser Effekt aber winzig klein. Schon vor zwei Jahren gelang es Prof. Andrei Pimenov und seinem Team vom Institut für Festkörperphysik der TU Wien gemeinsam mit einer Forschungsgruppe der Universität Würzburg, einen riesengroßen Faraday-Effekt zu erzielen, indem sie das Licht durch spezielle Quecksilber-Tellurid-Plättchen schickten und ein Magnetfeld anlegten.
Allerdings konnte der Effekt damals nur über eine äußere magnetische Spule gesteuert werden, womit große technologische Nachteile verbunden sind. „Verwendet man einen Elektromagneten, um den Effekt zu steuern, benötigt man sehr starke Ströme“, erklärt Andrei Pimenov. Nun gelang es, die Drehung von Terahertz-Strahlen ganz einfach durch ein Anlegen einer elektrischer Spannung von weniger als einem Volt zu steuern. Dadurch wird das System viel einfacher und schneller.
Dafür, dass sich die Polarisation überhaupt dreht, ist nach wie vor ein Magnetfeld verantwortlich. Doch die Stärke des Effektes wird nicht mehr durch die Stärke des Magnetfeldes bestimmt, sondern durch die Anzahl der Elektronen, die an dem Prozess beteiligt sind – und diese Anzahl lässt sich ganz einfach durch elektrische Spannung regulieren. Daher genügt nun ein Permanentmagnet und eine Spannungsquelle, die technisch vergleichsweise einfach zu handhaben ist.
Terahertz-Strahlung
Das Licht, das für die Experimente verwendet wird, ist nicht sichtbar: Es handelt sich um Terahertz-Strahlung mit einer Wellenlänge in der Größenordnung von einem Millimeter. „Die Frequenz dieser Strahlung entspricht der Taktfrequenz, die vielleicht die übernächste Generation von Computern erreichen wird“, meint Pimenov. „Die Bauteile heutiger Computer, in denen Information nur in Form von elektrischen Strömen weitergegeben wird, können kaum noch grundlegend verbessert werden. Die Ströme durch Licht zu ersetzen würde ganz neue Möglichkeiten bringen.“ Doch nicht nur für hypothetische neue Computer ist es wichtig, durch den neu entwickelten Licht-Dreh-Mechanismus Strahlen ganz gezielt kontrollieren zu können. Terahertzstrahlung wird heute für viele Zwecke verwendet, etwa auch für bildgebende Verfahren in der Sicherheitstechnik am Flughafen.
Optischer Transistor
Schickt man Licht durch einen Polarisationsfilter, kann es je nach Polarisationsrichtung durchgelassen oder abgeblockt werden. Die Drehung des Lichtstrahls – und damit die angelegte elektrische Spannung – entscheidet also, ob ein Lichtsignal gesendet oder blockiert wird. „Das ist genau das Prinzip eines Transistors“, erklärt Pimenov: „Das Anlegen einer äußeren Spannung entscheidet darüber, ob Strom fließt oder nicht – und in unserem Fall entscheidet die Spannung eben, ob das Licht ankommt oder nicht.“ Die neue Erfindung ist somit die optische Entsprechung eines elektrischen Transistors.