Graphen bleibt Graphen auch unter Silizium
Marc A. Gluba/HZB
Graphen ist extrem leitfähig und vollkommen lichtdurchlässig, dabei billig und ungiftig. Damit eignet es sich perfekt als transparente Kontaktschicht in Solarzellen zum Abführen des Stroms, ohne den Lichteinfall zu verringern, zumindest theoretisch. Ob dies auch in der realen Welt funktioniert, war aber fraglich, denn „ideales“ Graphen – eine freischwebende flache Wabenstruktur aus einer einzigen Lage Kohlenstoffatome – gibt es nicht: Wechselwirkungen mit benachbarten Schichten können die Eigenschaften von Graphen jedoch drastisch verändern.
„Wir haben untersucht, wie sich die Leitungseigenschaften von Graphen verändern, wenn es in einen Schichtstapel ähnlich dem einer Dünnschicht-Silizium-Solarzelle eingebaut wird. Wir waren selbst überrascht, dass wir nachweisen konnten, dass sich diese Eigenschaften dadurch nur wenig verändert haben“, erklärt Marc Gluba. Sie stellten dafür Graphen auf einer Kupferfolie her, transferierten es auf ein Glas-Substrat und schieden dann eine dünne Schicht aus Silizium darüber ab. Dabei untersuchten sie zwei Varianten, wie sie auch in den gängigen Silizium-Dünnschicht-Technologien verwendet werden: zum einen eine Probe mit einer amorphen Siliziumschicht, in der die Silizium-Atome wie in einer erstarrten Schmelze ungeordnet sind; zum anderen untersuchten sie, wie sich ein typischer Kristallisationsprozess, der das ungeordnete Silizium in seine kristalline Phase überführt, auf die Eigenschaften des Graphens auswirkt. Obwohl sich das Gefüge der Deckschicht infolge der Erwärmung auf mehrere hundert Grad Celsius komplett verändert, ist das vergrabene Graphen auch danach noch nachzuweisen.
„Das haben wir so nicht erwartet, aber unser Ergebnis zeigt: Graphen bleibt Graphen, auch unter Silizium“, sagt Norbert Nickel. Ihre Messungen der Beweglichkeit über den Hall-Effekt zeigten, dass die Beweglichkeit von Ladungsträgern in der eingebetteten Graphen-Schicht rund 30mal höher liegt als in konventionellen Kontaktschichten aus Zinkoxid. „Allerdings ist es noch sehr schwierig, diese nur eine Atomlage dünne Kontaktschicht mit äußeren Kontakten zu verbinden, daran müssen wir noch arbeiten“, sagt Gluba. „Die Kollegen von den Dünnschichttechnologien spitzen schon die Ohren und wollen das einbauen“, sagt Nickel. Die Forscher haben ihre Messungen an Quadratzentimeter großen Proben gemacht. Es ist praktisch aber möglich, viel größere Flächen mit Graphen zu beschichten.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.