Fusionsexperiment TEXTOR: Ende einer Ära
Jülicher Plasmaphysiker wenden sich verstärkt Erforschung von Materialien zu
Forschungszentrum Jülich
"TEXTOR hat wesentlich dazu beigetragen, dass wir heute wissen, wie die Fusion funktioniert", sagt Prof. Ulrich Samm, Direktor am Institut für Energie- und Klimaforschung, Bereich Plasmaphysik. Gelingt es, die Kernfusion – das Verschmelzen von Atomkernen – für die Energiegewinnung zu nutzen, so steht der Menschheit eine nahezu unerschöpfliche Energiequelle zu Verfügung.
Seit 1983 lieferte das Tokamak EXperiment for Technology Oriented Research, kurz TEXTOR, eine ganze Reihe wissenschaftlich herausragender Ergebnisse. Unter anderem wurde 1989 in Jülich mit der Borierung eine Methode zur Beschichtung der Brennkammerwand entwickelt und erprobt, die anschließend von allen anderen Fusionsexperimenten weltweit übernommen wurde. 1991 verwirklichten die Jülicher Wissenschaftler an TEXTOR die geregelte Strahlungskühlung. Mit der Methode lässt sich das zehn Millionen Grad heiße Wasserstoff-Plasma am Rand auf eine Temperatur bringen, der die Wandmaterialien standhalten. Zuletzt trugen Tests und Optimierungen von Wandelementen aus Wolfram dazu bei, dass man dieses Metall auch im internationalen Fusionsreaktor ITER einsetzen wird, der bis 2020 in Südfrankreich in Betrieb gehen soll.
TEXTOR wurde hauptsächlich gebaut und genutzt, um die Wechselwirkungen zwischen Plasma und Brennkammerwand zu studieren. Hinsichtlich Plasmatemperatur und Plasmadichte konnte das Experiment aber nicht die realen Betriebsbedingungen eines Fusionskraftwerkes herstellen. Dazu war TEXTOR zu klein. Genauso wenig war die Anlage geeignet, um damit Probleme des Dauerbetriebes zu erforschen. "Gerade aber der Dauerbetrieb ist die verbliebene Herausforderung auf dem Weg hin zu einem stromproduzierenden Fusionskraftwerk. Nach dem Ende von TEXTOR konzentrieren wir uns nun voll darauf, diese Herausforderung zu bewältigen", sagt Samm.
Die Jülicher Plasmaphysiker unterstrichen ihre Neuausrichtung auf die veränderten Fragestellungen mit einem symbolischen Akt. Sie legten nach der letzten Plasma-Entladung von TEXTOR einen Schalter in dessen Steuerzentrale um. Daraufhin zeigten die Kontrollmonitore nicht mehr das Innere der TEXTOR-Brennkammer, sondern Bilder vom Jülicher Plasmagenerator PSI und anderen Anlagen der Materialforschung. Denn der Dauerbetrieb eines Fusionskraftwerkes wird nur möglich sein, wenn entsprechende Materialien dafür bereitstehen.
Die Jülicher Fusionsforscher haben die Verlagerung ihrer Forschungsschwerpunkte schon seit längerem vorbereitet. So berief das Forschungszentrum Jülich im März dieses Jahres mit Prof. Christian Linsmeier vom Max-Planck-Institut für Plasmaphysik, Garching, einen ausgewiesenen Materialwissenschaftler als zweiten Direktor des Institutsbereichs. Außerdem bauten die Plasmaphysiker ihre Forschungsaktivitäten außerhalb von TEXTOR aus: Zuletzt entfielen nur noch 15 Prozent der Laborflächen auf das Großgerät. Wie bisher werden die Jülicher Fusionsforscher auch an internationalen und europäischen Einrichtungen arbeiten, insbesondere am größten derzeit laufenden Fusionsexperiment JET in England. Neben ITER und DEMO, der Reaktorgeneration nach ITER, bringen sie ihre Expertise auch bei dem Stellarator Wendelstein 7-X in Greifswald – einem alternativen Reaktortyp – ein.
Der Abbau der Anlage TEXTOR, die rund 600 Tonnen Metall enthält, wird mehr als drei Jahre dauern.
Meistgelesene News
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.