Perfekte Kontrolle von Lichtwellen

15.01.2014 - Deutschland

Der perfekten Kontrolle über Lichtwellen ist ein Team vom Labor für Attosekundenphysik (LAP) einen Schritt näher gekommen. Die Forscher haben einen Detektor entwickelt der ihnen zeigt, wie die Schwingungen in einem nur wenige Femtosekunden (10-15 Sekunden) dauernden Lichtpuls geformt sind. Die detaillierte Kenntnis der Wellenform dieser Pulse ist der Schlüssel zur Entwicklung noch tausend Mal kürzerer Attosekunden-Lichtblitze, mit denen extrem schnellere Vorgänge in der Welt der Atome beobachtet werden können.

Moderne Kurzpuls-Laser erzeugen Lichtpulse von wenigen Femtosekunden Länge. Licht, das für die Strecke von der Erde bis zum Mond nur eine Sekunde benötigt, legt in einer Femtosekunde nur drei Zehntausendstel eines Millimeters zurück. Die Lichtwelle schlägt dabei gerade ein- oder zweimal kräftig nach oben oder nach unten aus. Vor und hinter diesen Ausschlägen gibt es nur kleine, schnell verebbende Schwingungsausläufer. Um solche Pulse gezielt in der Ultrakurzzeitphysik einsetzen zu können ist es wichtig zu wissen, wie die starken Schwingungen in den Pulsen genau beschaffen sind.

Ein Team des Labors für Attosekundenphysik am Max-Planck-Institut für Quantenoptik (MPQ), an dem Wissenschaftler der Technischen Universität München (TUM), der Ludwig Maximilians-Universität München (LMU) sowie weitere Kooperationspartner beteiligt waren, hat nun einen einfachen Detektor aus Glas entwickelt, um die Form der Lichtwellen in einem Femtosekundenpuls exakt zu bestimmen.

In Experimenten der letzten Jahre stellten die Forscher fest, dass starke Laserpulse beim Auftreffen auf Glas messbare elektrische Ströme erzeugen. Im Fachjournal Nature Photonics veröffentlichten die Physiker nun aktuelle Ergebnisse die zeigen, dass die Fließrichtung dieser elektrischen Ströme von der Form der  eingestrahlten Lichtwellen abhängt, wenn ein Femtosekunden-Laserpuls verwendet wird.

Für die Eichung ihres neuen Glasdetektors koppelten die Forscher ihr System mit einem herkömmlichen Messgerät für die Bestimmung von Licht-Wellenformen. Dieses „klassische“ Messinstrument misst im Vakuum wie Elektronen aus Edelgasatomen herausgeschleudert werden, nachdem der Laserpuls diese getroffen hatte. Der Apparat funktioniert allerdings nur im Vakuum.

Durch den Abgleich der in dem Glas induzierten Elektronenströme mit den Daten des herkömmlichen Messgeräts, können die Forscher nun das Glas als neuen Detektor für die Lichtwellen-Formen einsetzen. Das neue Messgerät vereinfacht die Ultrakurzzeitphysik enorm, denn man muss es nicht im Vakuum betreiben. Zudem ist seine Messtechnik und Handhabung sehr viel unkomplizierter als bisherige Methoden zur Bestimmung von Wellenformen.

Kennen die Wissenschaftler die Wellenform der Femtosekunden-Laserpulse, können sie mit ihnen wiederum sehr stabil und reproduzierbar die noch tausend Mal kürzeren Attosekunden-Lichtblitze erzeugen. Die Beschaffenheit der Attosekunden-Lichtblitze hängt also ab von der Wellenform der Femtosekunden-Laserpulse. Mit Attosekunden-Lichtblitzen kann man Elektronen in Atomen oder Molekülen „fotografieren“. Um gute „Bilder“ zu erhalten braucht man unterschiedliche Lichtblitze, je nachdem welche Materie man untersucht.

Verlässliche Beobachtungen des Mikrokosmos mit Hilfe individuell beschaffener Attosekunden-Lichtblitze könnten künftig einfacher zu bewerkstelligen sein, da nun ihre Quelle, also die Wellenform der Laserpulse, mit dem neuen Detektor aus Glas einfacher zu kontrollieren ist.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Eclipse

Eclipse von Wyatt Technology

FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln

Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...