Spiralförmig geordnete Elektronen- und Kernspins in Quantendrähten
B. Braunecker, P. Simon, and D. Loss, Phys. Rev. B 80, 165119 (2009))
Für ihr Experiment benutzten die Forscher um Prof. Dominik Zumbühl vom Departement Physik der Universität Basel sogenannte Quantendrähte aus dem Halbleiterwerkstoff Galliumarsenid. Dabei handelt es sich um eindimensionale Strukturen, bei denen sich Elektronen nur in einer Raumrichtung bewegen können.
Bei Temperaturen über zehn Kelvin wiesen die Quantendrähte eine universelle, quantisierte Leitfähigkeit auf, deren Wert auf einen ungeordneten Zustand der Elektronenspins hinweist. Kühlten die Forscher die Drähte mit flüssigem Helium aber auf eine Temperatur unter hundert Millikelvin (0,1 Kelvin) ab, zeigten die elektronischen Messungen einen um die Hälfte reduzierte Leitfähigkeit, was auf eine kollektive Ausrichtung der Elektronenspins schliessen lässt. Dieser Zustand blieb auch konstant, als die Forscher die Probe auf noch tiefere Temperaturen bis zehn Millikelvin herunterkühlten.
Kopplung von Kernen und Elektronen
Die Resultate sind deshalb aussergewöhnlich, weil zum ersten Mal eine Kernspinordnung schon bei rund 0,1 Kelvin gemessen werden konnte. Dass sich eine spontane Ordnung der Kernspins bildet, liess sich meist erst unter einem Mikrokelvin beobachten, also bei einer um fünf Grössenordnungen tieferen Temperatur.
Die Erklärung, weshalb eine Kernspinordnung schon bei 0,1 Kelvin möglich ist, liegt darin, dass die Kerne der Gallium- und der Arsenatome in Quantendrähten an die Elektronen koppeln und diese wiederum auf die Kerne rückwirken. Durch diese Kopplung verstärkt sich die Wechselwirkung zwischen den magnetischen Momenten, was zur Ordnung der Kern- und Elektronenspins führt. Diese wird zusätzlich durch den Umstand stabilisiert, dass sich die Elektronen in den eindimensionalen Quantendrähten nicht ausweichen können, wodurch sie stark miteinander wechselwirken.
Spiralförmige Ordnung der Elektronen- und Kernspins
Im geordneten Zustand zeigen die Spins der Elektronen und der Atomkerne allerdings nicht alle in dieselbe Richtung, sondern ihre Ausrichtung war entlang des Quantendrahts spiralförmig verdreht. Diese Anordnung der Spins in Form einer Helix, wird von einem theoretischen Modell vorausgesagt, das Physiker um Prof. Daniel Loss von der Universität Basel bereits 2009 beschrieben hatten. Demnach halbiert sich die Leitfähigkeit bei einer spiralförmigen Anordnung der Kernspins. Alle anderen heute bekannten Theorien sind mit den Daten aus dem Experiment nicht vereinbar.
Originalveröffentlichung
Meistgelesene News
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.