Wenn Elektronen in verschiedenen Ligen spielen

Vom Charakter der Orbitale bedingte Klassenunterschiede zwischen den Elektronen weisen möglichen Weg zur Erhöhung der Sprungtemperatur bei eisenbasierten Hochtemperatursupraleitern

14.02.2014 - Deutschland

Wenn Elektronen in verschiedenen Ligen spielen, dann kann die Art, wie sie zusammenspielen und miteinander wechselwirken, sehr unterschiedlich sein. Über einen solchen Klassenunterschied zwischen den Elektronen in einem eisenbasierten Hochtemperatursupraleiter, der dafür verantwortlich ist, dass Vorboten der Supraleitfähigkeit in diesem Material bereits weit oberhalb der kritischen Sprungtemperatur auftreten, berichtet ein Team von Forschern des Zentrums für Elektronische Korrelationen und Magnetismus (EKM) der Universität Augsburg und der Moldawischen Akademie der Wissenschaften in einem Beitrag im Wissenschaftsjournal "Nature Communications". Die Breite der Anwendungsmöglichkeiten dieser Materialien könnte von einer Steigerung ihrer Sprungtemperatur durch Ausnutzung dieses Klassenunterschieds profitieren.

Auf die Orbitale kommt es an

Seit ihrer Entdeckung im Jahr 2008 zeigt sich die Familie der eisenbasierten Supraleiter immer wieder gut für Überraschungen. So können in diesen Materialien die Elektronen sowohl sogenannte Cooper-Paare - als Voraussetzung für Supraleitfähigkeit - bilden als auch zum Magnetismus beitragen. Dies ist zwar auch bei der bereits länger bekannten Klasse der Kupferoxid-Hochtemperatursupraleiter der Fall, aber in den eisenbasierten Materialien unterscheiden sich die Elektronen untereinander in ihrem orbitalen Charakter. Und je nach der Ausprägung ihres orbitalen Charakters sind die einen Elektronen bereits bei Raumtemperatur metallisch, während die anderen hier noch isolierendes Verhalten zeigen, um erst bei tiefen Temperaturen ebenfalls metallischen Charakter anzunehmen. Dieser außergewöhnliche, weil orbitalabhängige Metall-Isolator-Übergang, der im Experiment beobachtet werden konnte, macht die wichtige Rolle der orbitalen Eigenschaften der Elektronen für das theoretische Verständnis der eisenbasierten Supraleiter deutlich.

Eine zweite Energielücke weit oberhalb der kritischen Sprungtemperatur

"Wir konnten nun beobachten, dass es die Symmetrieeigenschaften ihrer Orbitale sind, die bestimmen, bei welchen Temperaturen welche Elektronen jene sogenannten Cooper-Paare bilden, die nötig sind, um den supraleitenden Zustand zu erreichen", so Dr. Joachim Deisenhofer vom Augsburger Institut für Physik. Zu dieser Beobachtung verhalf optische Spektroskopie im Terahertz-Frequenzbereich. Denn die Energie, die erforderlich ist, um die Bindung der für die Supraleitfähigkeit verantwortlichen Cooper-Paarungen aufzubrechen, zeigt sich im optischen Spektrum in Form einer sogenannten Anregungs- oder Energielücke, die unterhalb der kritischen Sprungtemperatur sichtbar wird. In dem von ihnen untersuchten eisenbasierten Supraleiter Rb1-xFe2-ySe2 konnten die Augsburger EKM-Physiker und ihre Kollegen von der Moldawischen Akademie der Wissenschaften nun aber das Auftreten einer zweiten solchen Energielücke bereits weit oberhalb der Sprungtemperatur beobachten und die bereits bei dieser hohen Temperatur eintretenden Cooper-Paarungen jener Rb1-xFe2-ySe2-Elektronen-"Liga" zuordnen, deren orbitaler Charakter auch den außergewöhnlichen Metall-Isolator-Übergang dieser Materialfamilie bewirkt.

Breiteres Anwendungsspektrum durch Erhöhung der Sprungtemperatur

"Sollte es gelingen, die in eisenbasierten Supraleitern in dieser 'Liga' spielenden Elektronen die Leitfähigkeit des Materials dominieren zu lassen", resümiert Deisenhofer, "könnte dies eine weitere Erhöhung der Sprungtemperaturen der eisenbasierten Supraleiter und eine Erweiterung ihrer Anwendungsmöglichkeiten ermöglichen".

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren
Themenwelt anzeigen
Themenwelt Spektroskopie

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren