Noch dünnere Solarzellen mit Nanoteilchen?

09.04.2014 - Deutschland

Nanostrukturen könnten dafür sorgen, dass mehr Licht in die aktive Schicht von Solarzellen gelenkt wird, so dass der Wirkungsgrad steigt. Prof. Dr. Martina Schmid (HZB und FU) hat nun genau gemessen, wie unregelmäßig verteilte Silber-Partikel die Lichtausbeute verändern. Sie zeigte, dass die Nanoteilchen über ihre elektromagnetischen Nahfelder miteinander wechselwirken, so dass lokale „Hot Spots“ entstehen, wo das Licht besonders stark konzentriert wird.

HZB/CalTech

Topographie der Oberfläche sowie die lokalen optischen Anregungen. Die Aufnahme zeigt mehrere „Hot spots“, die durch Wechselwirkungder Nanoteilchen mit dem Licht und auch untereinander stehen.

HZB

Die Silber-Nanoteilchen sind unregelmäßig geformt und zufällig auf der Oberfläche verteilt, zeigt diese Raster-Elektronen-mikroskopie-Aufnahme.

HZB/CalTech
HZB

Die Arbeit wurde von den Europhysics News, dem Magazin der Europäischen Physikalischen Gesellschaft, als Highlight eingestuft und weist den Weg für das gezielte Design solcher Nanostrukturen.

Selbst bei Dünnschichtsolarzellen möchte man noch Material und damit Kosten sparen. So bestehen zum Beispiel Chalkopyrit-Zellen (CIGS) teilweise aus seltenen Elementen wie Indium und Gallium. Macht man die aktive Schicht jedoch sehr dünn, absorbiert sie zu wenig Licht und der Wirkungsgrad sinkt. Nanostrukturen könnten das Licht im aktiven Material einfangen und so die Effizienz erhöhen. Diese Idee verfolgt Prof. Dr. Martina Schmid, die am HZB die Nachwuchsgruppe NanooptiX leitet und an der FU eine Juniorprofessur hat. „Unser Ziel ist es, Nanostrukturen so zu optimieren, dass sie gezielt bestimmte Wellenlängen des Sonnenspektrums in die Zelle hineinstreuen.“

Unregelmäßig verteilte Nanopartikel

Eine Option dafür sind einfache Nanostrukturen aus Metall-Partikeln, die sich selbst ausbilden, wenn man einen dünnen Metallfilm aufbringt und mit Wärme behandelt. Dafür beschichtete Martina Schmid zunächst ein Glassubstrat mit einem extrem dünnen Silberfilm (20 nm), den sie anschließend einer Wärmebehandlung unterzog. Dadurch bildeten sich unregelmäßige Silberpartikel mit Durchmessern um die 100 Nanometer.

Mit der „Lichtspitze“ über die Probe

Wie solche zufällig verteilten Nanopartikel den Lichteinfall auf eine darunterliegende Solarzelle beeinflussen, untersuchte Martina Schmid mit Kollegen am California Institute of Technology (CalTech). Sie nutzten dafür eine besonders empfindliche Methode, der Rasternahfeld-Mikroskopie (SNOM): Dabei wird eine extrem feine Spitze über die Probe geführt, die zum einen wie bei der Rasterkraftmikroskopie die Topographie ermittelt, gleichzeitig aber auch durch einen winzigen Kanal in der Spitze die Probe lokal belichtet und optische Anregungen (Plasmonen) in den Nanopartikeln erzeugt. Diese optischen Anregungen können entweder das Licht wie gewünscht in die Solarzelle hineinkoppeln - oder aber im Gegenteil in Wärme verwandeln, wodurch es für die Solarzelle verloren geht.

Es kommt auf die Nachbarschaft an: Wechselwirkungen bestimmen über die Streuung des Lichts
Die Messungen zeigten, dass es zwischen dicht benachbarten unregelmäßig verteilten Nanopartikeln starke Wechselwirkungen geben kann, was lokal zu „Hot Spots“ führt. „Während in den dunklen Regionen Licht verstärkt absorbiert und in Wärme umwandelt wird, zeigen die hellen „Hot-Spots“, wo die elektromagnetischen Felder von Nanopartikeln besonders stark wechselwirken. Dadurch könnte die Energieumwandlung in der Solarzelle erhöht werden“, erklärt Martina Schmid.

Letztendlich entstehen Bereiche sehr starker, aber auch Bereiche vergleichsweise schwacher Felder. Allerdings ist es schwierig, einen klaren Zusammenhang zwischen dem Auftreten dieser Hot Spots und bestimmten Nanopartikeln herzustellen. „Die Teilchen wirken über ihre elektromagnetischen Nahfelder aufeinander ein, das ist deutlich komplexer als bislang vermutet. Wir müssen nun herausfinden, wie wir gezielt die gewünschten Feldverteilungen erzeugen können“, erklärt Martina Schmid. Diese Fragen wird sie am HZB und an der Freien Universität Berlin zusammen mit der Arbeitsgruppe um Prof. Dr. Paul Fumagalli weiter untersuchen.

Originalveröffentlichung

M. Schmid, J. Grandidier and H. A. Atwater, “Scanning near-field optical microscopy on dense random assemblies of metal nanoparticles“, J. Opt., 15, 125001 (2013)

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

NANOPHOX CS

NANOPHOX CS von Sympatec

Partikelgrößenanalyse im Nanobereich: Hohe Konzentrationen problemlos analysieren

Zuverlässige Ergebnisse ohne aufwändige Probenvorbereitung

Partikelanalysatoren
DynaPro Plate Reader III

DynaPro Plate Reader III von Wyatt Technology

Screening von Biopharmazeutika und anderen Proteinen mit automatisierter dynamischer Lichtstreuung

Hochdurchsatz-DLS/SLS-Messungen von Lead Discovery bis Qualitätskontrolle

Partikelanalysatoren
Eclipse

Eclipse von Wyatt Technology

FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln

Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller