Forscher „sezieren“ Moleküle mit Ultrakurzpulslasern

Präzisionschemie mit Laserwerkzeugen

30.04.2014 - Deutschland

Was passiert, wenn ein ultrakurzer Laserpuls auf ein bestimmtes Molekül trifft? Wenn sich binnen weniger Femtosekunden eine große Menge Energie an einem winzigen Punkt entlädt? Und wie lässt sich dieses dynamische Zusammentreffen von Lichtteilchen und Materie kontrollieren? Diesen und ähnlichen Fragen geht Prof. Dr. Stefanie Gräfe von der Friedrich-Schiller-Universität Jena in ihrer Forschungsarbeit nach. Die theoretische Chemikerin und ihr Team haben jetzt gemeinsam mit Kollegen der TU Wien und weiteren internationalen Partnern ein Verfahren demonstriert, mit dem sich einzelne Moleküle in definierte Produkte zerlegen lassen. Das berichten die Forscher in der aktuellen Ausgabe des Fachmagazins "Physical Review Letters".

Laser wie ein Sezierbesteck nutzen

Dazu nutzen die Forscher Ultrakurzpulslaser. "Das sind Laser, die aus extrem kurzen Blitzen bestehen und in wenigen Femtosekunden sehr hohe Intensitäten erreichen", erläutert Prof. Gräfe. Der extrem kurze Lichtblitz - fünf Femtosekunden sind bloß fünf Millionstel einer Milliardstelsekunde - löst einen chemischen Prozess aus, dessen Ablauf eigentlich viel länger dauert, ähnlich wie eine sehr kurze Explosion an genau den richtigen Stellen ein großes Gebäude zuerst zum Wanken und nach einer gewissen Zeit schließlich zum Einstürzen bringen kann. "Diese Laser können wir wie ein Sezierbesteck nutzen, um chemische Moleküle in ganz bestimmte Bestandteile zu zerlegen." Das haben die Wissenschaftler anhand eines einfachen Beispiel-Moleküls demonstriert: Während sie einen Laser wie eine Pinzette dazu nutzten, die Moleküle in einem Gasstrahl einheitlich zu orientieren, diente ein zweiter Laserpuls als Skalpell, das die Moleküle zerlegt.

"Welche Zerfallsprodukte wir erhalten, hängt entscheidend davon ab, aus welchem Winkel der zweite Laser auf die Moleküle trifft", erläutert Prof. Gräfe. Wie das Forscherteam, an dem auch Physiker um Prof. Dr. Gerhard Paulus von der Uni Jena beteiligt sind, in der aktuellen Studie zeigen konnte, lassen sich die entstehenden Produkte über die Wahl des Einstrahlwinkels exakt vorherbestimmen.

Strategien entwickeln, Strahlungsschäden an Molekülen zu minimieren

Für einen praktischen Einsatz in der Produktion bestimmter chemischer Produkte sei dieses Verfahren zwar ungeeignet. "Das ist im Augenblick reine Grundlagenforschung", betont Gräfe. Dennoch sei der Erkenntnisgewinn durchaus auch für andere Forschungsfelder relevant. "Alle in der Natur vorkommenden Moleküle absorbieren elektromagnetische Strahlung, beispielsweise UV-Strahlung", erläutert die Chemikerin. "Je besser wir verstehen, was infolge der Wechselwirkung mit der Strahlung in den Molekülen passiert, umso besser können wir zum Beispiel auch Strategien entwickeln, Strahlungsschäden an Molekülen zu minimieren."

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Eclipse

Eclipse von Wyatt Technology

FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln

Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Chemie?