Nanoelektronik: Bewegliche Teilchen im Festkörper
Detaillierte Einblicke in die Schaltvorgänge resistiver Schaltelemente
Hocheffizient, energiesparend und äußerst schnell: Resistive Schalter gelten als vielversprechende Komponenten für Computer der nächsten Generation. Jülicher Wissenschaftler haben gemeinsam mit amerikanischen Partnern nun erstmals beobachtet, wie sich die Strukturen im Innern dieser zukunftsweisenden Schaltelemente im Detail ausbilden. Obwohl es sich um einen Festkörper handelt, bewegen sich Metallatome darin hin und her. Der genaue Mechanismus war lange unklar. Die Ergebnisse sind in der Fachzeitschrift Nature Communications nachzulesen.

Aufbau einer resistiven Speicherzelle (ReRAM): Sogenannte Filamente verändern den elektrischen Widerstand – was sich zur Speicherung von Informationen nutzen lässt.
Quelle: Jülich-Aachen Research Alliance JARA

Aufnahme mit dem Transmissionselektronenmikroskop: Wachstum und Verlagerung von Silber-Nanopartikeln unter dem Einfluss eines elektrischen Feldes. Das ursprüngliche Metallpartikel löst sich auf (oben) und scheidet sich an einem neuen Keim ab. So entsteht eine effektive Verschiebung des Partikels (unten).
Quelle: Nature Communications / Ilia Valov, Wei D. Lu


Computer-Chips auf der Basis von resistiven Schaltern, etwa resistive Speicherelemente – kurz ReRAM, wären nicht nur deutlich energieeffizienter und schneller als heutige Datenspeicher. Sie ermöglichen es auch, Logik- und Speicherfunktionen miteinander zu vereinen. Damit sind diese nanoelektronischen Bauteile ideale Kandidaten für den Aufbau neuromorpher Schaltungen. Solche Hardware ist dem Vorbild biologischer Nervenzellen nachempfunden und schon von sich aus lernfähig.
Aufnahmen mit dem Transmissionselektronenmikroskop aus dem Innern einer solchen resistiven Speicherzelle zeigen nun, wie sich Nanopartikel aus wenigen Metallatomen unter dem Einfluss eines elektrischen Felds bewegen. Diese sogenannten Cluster formieren sich zu einer elektrisch leitenden Verbindung zwischen den beiden Elektroden der Speicherzelle. Dieses Filament verändert den elektrischen Widerstand. Der Effekt lässt sich zum Verarbeiten und Speichern von Informationen nutzen. Die Daten bleiben auch dann noch erhalten, wenn kein Strom fließt. "Die Beobachtung der Teilchenbewegung ist ein großartiges Ergebnis", freut sich Dr. Ilia Valov vom Jülicher Peter Grünberg Institut, Elektronische Materialien (PGI-7).
"Unsere Arbeit liefert erstmals eine Erklärung, wie die bekannten unterschiedlichen Zustände von resistiven Zellen zustande kommen. Mithilfe der zugrundeliegenden Prinzipien lässt sich vorhersagen, wie die Prozesse in Abhängigkeit von Materialeigenschaften und der lokalen elektrischen Stromstärke ablaufen."
Gemeinsam mit amerikanischen Partnern hat der Jülicher Wissenschaftler die Bewegungsmuster für verschiedene Metalle, darunter auch Silber und Platin, verfolgt. "Vergleichbar mobile Atome wurden bisher eher mit Flüssigkeiten und Gasen in Verbindung gebracht. Dies ist das erste Mal, dass solche Bewegungen in einem Festkörper sichtbar gemacht werden konnten", betont Prof. Wei Lu von der University of Michigan.
Die Erkenntnisse könnten neue Ansätze für das Design von Computer-Chips ermöglichen. So werden etwa Verfahren denkbar, bei denen sich die Schaltkreise erst nachträglich durch fein aufeinander abgestimmte elektrische Signale gezielt ausformen lassen. Darüber hinaus werfen die Erkenntnisse ein neues Licht auf bestimmte Vorgänge wie Alterungsprozesse von modernen Kondensatoren, Katalysatoren und sogenannten Metamaterialien, die aus ganz ähnlichen Materialkombinationen bestehen.
Originalveröffentlichung
Meistgelesene News
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren

NANOPHOX CS von Sympatec
Partikelgrößenanalyse im Nanobereich: Hohe Konzentrationen problemlos analysieren
Zuverlässige Ergebnisse ohne aufwändige Probenvorbereitung

DynaPro Plate Reader III von Wyatt Technology
Screening von Biopharmazeutika und anderen Proteinen mit automatisierter dynamischer Lichtstreuung
Hochdurchsatz-DLS/SLS-Messungen von Lead Discovery bis Qualitätskontrolle

Eclipse von Wyatt Technology
FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln
Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.