Einzelne Siliziumatome in Graphen verschoben

16.09.2014 - Österreich

Seit einigen Jahren ist es möglich, einzelne Atome mit Hilfe eines Elektronenmikroskops abzubilden. Besonders eindrucksvoll gelingt dies bei Graphen, einer nur ein Atom dicken Schicht aus Kohlenstoffatomen. Einer Gruppe rund um Toma Susi, Physiker an der Universität Wien, ist es nun in Kooperation mit Teams aus Großbritannien und den USA gelungen, einzelne Siliziumatome im Graphen-Gitter zerstörungsfrei zu bewegen. Aktuell berichten die Forscher im Journal "Physical Review Letters", wie ihre Experimente mit Hilfe spezialisierter Mikroskopie-Techniken und aufwendiger Computerberechnungen glückten.

Toma Susi, Universität Wien

Aufgrund seiner relativen Größe ragt das Siliziumatom aus der Graphen-Ebene heraus

Bereits 1959 hat der Physiker Richard Feynman die berühmte Frage gestellt, ob es jemals möglich sein wird, einzelne Atome sehen und sogar bewegen zu können. Lange Zeit galt seine Vision eher als Science Fiction, aber Schritt für Schritt wurde diese Vision durch die moderne Mikroskopie zur Realität im wissenschaftlichen Alltag. Bei solchen Untersuchungen können jedoch manchmal Schäden am erforschten Material entstehen.

High-Tech-Mikroskop ermöglichte Forschungserfolg

In der aktuellen Studie wurde Graphen, eine nur ein Atom dicke Lage aus Kohlenstoffatomen, in die einzelne Siliziumatome eigebettet sind, getestet. Die Siliziumatome ragen aufgrund ihres Größenunterschiedes aus der Ebene der Kohlenstoffatome heraus. "Wir kamen mithilfe detaillierter Computersimulationen zum Schluss, dass das Material durch Beschuss mit Elektronen manipuliert werden kann, ohne dieses zu beschädigen. Dafür haben wir eine Beschleunigungsspannung von 60.000 Volt benötigt", so Toma Susi, Erstautor und FWF-Lise-Meitner-Stipendiat an der Universität Wien: "Voraussetzung für diese High-Tech-Experimente ist ein modernes hochauflösendes Ultra-Hochvakuum-Raster-Transmissionselektronenmikroskop, von denen es derzeit weltweit nur etwa zehn gibt. Die Universität Wien verfügt über ein derartiges Gerät, das mit einer Auflösung von weniger als ein Ångström, das ist ein Zehnmillionstel Millimeter, nahezu alle atomaren Abstände auflösen kann. Damit habe ich meine komplexen Untersuchungen durchgeführt." Das Team in Daresbury (UK) arbeitete ebenfalls mit einem solchen Mikroskop.

Vergleich der Messergebnisse mit Computersimulationen

Die Computerberechnungen haben gezeigt, dass Kohlenstoffatome in unmittelbarer Nachbarschaft der Siliziumatome weniger stark gebunden sind als jene Kohlenstoffatome, die weit entfernt von den Siliziumatomen liegen. Dadurch können die Forscher mit dem Elektronenstrahl ein Nachbaratom eines Siliziumatoms nur gerade soweit aus dem Gitter stoßen, dass das Siliziumatom und das Kohlenstoffatom ihre Plätze tauschen. Dieser Platztausch wurde von beiden Forschungsteams direkt im Elektronenmikroskop beobachtet. Durch Analyse von etwa 40 solcher aufgenommenen Prozesse konnten die Forscher herausfinden, dass es sich bei dem Platztausch um einen stochastischen Prozess handelt und dessen Wahrscheinlichkeit bestimmen. Ein direkter Vergleich der Messergebnisse mit den Computersimulationen zeigte eine beeindruckende Übereinstimmung.

Elektronenstrahl steuert Platzwechsel der Siliziumatome

Neben der Bedeutung für die Physik eröffnen diese Ergebnisse sehr vielversprechende Möglichkeiten für die gezielte Erzeugung von Strukturen aus einzelnen Atomen. "Was unsere Ergebnisse wahrlich beeindruckend macht, ist, dass dieser Platzwechselprozess steuerbar ist, da das Siliziumatom immer an die Stelle, die vom Elektronenstrahl getroffen wird, springt", so Toma Susi, Physiker an der Universität Wien. "Das ermöglicht uns, die Bewegung jedes einzelnen Siliziumatoms auf das Genaueste zu steuern. Vielleicht sehen wir bald neue Quantenstrukturen oder das Logo einer Universität – geschrieben aus Siliziumatomen in Graphen."

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Chemie?