Überraschend hohe Sprungtemperatur bei einem elementaren Supraleiter gefunden
Arbeitsgruppe von Prof. R. Wiesendanger, Universität Hamburg
Die Supraleitung wurde Anfang des vergangenen Jahrhunderts entdeckt und wird heute standardmäßig in den stromführenden Magnetspulen von Kernspintomographen verwendet. Es gibt sogar ein erstes Pilotprojekt in der Essener Innenstadt, in dem ein supraleitendes Hochspannungskabel zwei Umspannstationen verbindet. All diese Anwendungen sind von einem Einsatz bei Raumtemperatur allerdings noch weit entfernt, was aber fantastische Vorteile hätte: der drastisch reduzierte Energieverbrauch würde die fossilen Brennstoffreserven schonen und eine weitaus geringere Treibhausgas-Emission zur Folge haben. Neben dem Einsatz in der Energietechnik sind auch emissionsfreie Langstreckenflugzeuge mit leistungsstarken Elektromotoren oder neuartige Computerbauteile, die dann praktisch keine Energie verbrauchen, denkbar. Wie die Physiker der Forschungsgruppe von Prof. Roland Wiesendanger von der Universität Hamburg in der aktuellen Ausgabe der Zeitschrift "Journal of Physics: Condensed Matter" berichten, untersuchten die Wissenschaftler das Element Lanthan mit Hilfe der Rastertunnelspektroskopie. Dabei stellten sie überraschend fest, dass sie eine 40% höhere Sprungtemperatur (die Temperatur, unterhalb derer das Material supraleitend wird) messen konnten, als es in der Literatur für dieses Element seit Jahrzehnten angegeben wurde. Dies stellt eine erstaunliche Entdeckung dar, da es sich bei dem Supraleiter Lanthan um ein häufig untersuchtes und gut verstanden geglaubtes elementares Metall handelt.
Die Wissenschaftler der Universität Hamburg fanden heraus, dass die erhöhten Werte für die Sprungtemperatur mit einer wesentlich höheren Reinheit des von ihnen hergestellten Lanthans zusammenhängen. Die untersuchten Lanthan-Filme und Nanoinseln ließ man mit Hilfe der Atomlagenabscheidung auf einer Wolfram-Unterlage wachsen und kontrollierte die Reinheit während der Herstellung mit einem Rastertunnelmikroskop (siehe Abbildung). Dabei stellte sich heraus, dass man an den saubersten Proben, die man wachsen lassen konnte, die 40% höheren Werte für die Sprungtemperatur fand, während man bei verunreinigten Proben den Literaturwert für die Sprungtemperatur reproduzieren konnte. Dieses Ergebnis ist von großer Bedeutung für ein besseres Verständnis des Phänomens der Supraleitung und deren Anwendung in nanoskaligen Supraleiter-Bauelementen.
Originalveröffentlichung
Superconductivity of lanthanum revisited: enhanced critical temperature in the clean limit; P. Löptien, L. Zhou, A. A. Khajetoorians, J. Wiebe, and R. Wiesendanger, J. Phys.: Condens. Matter 26 (2014) 425703.
Weitere News aus dem Ressort Wissenschaft
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Spektroskopie
Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!
Themenwelt Spektroskopie
Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!