Der Kleinste tanzt aus der Reihe
Fundamentale Änderung der Art der chemischen Bindung durch Isotopensubstitution
Am deutlichsten treten solche Effekt zutage, wenn die Unterschiede zwischen den Isotopen besonders groß sind, wie bei Wasserstoff. In der Natur kommt er als 1H (Protium, H), 2H (Deuterium, D) und 3H (Tritium, T) vor. Weitere Isotope wurden künstlich erzeugt, darunter auch exotische Atome, die andere Elementarteilchen enthalten. So besteht z.B. Myonium (Symbol Mu) aus einem Elektron und einem Anti-Myon als Kern. Chemisch verhält es sich wie ein Wasserstoffisotop, ist jedoch um den Faktor 9 leichter als 1H.
Jörn Manz (Shanxi University Taiyuan und FU Berlin), Donald G. Fleming (University of British Columbia, Kanada), Kazuma Sato und Toshiyuki Takayanagi (Saitama University, Japan) führten neuartige quantenchemische ab-initio-Berechnungen der Reaktion zwischen Bromwasserstoff und Bromatomen durch, die zur Bildung des Radikals BrHBr führt. Dabei interessierte sie der Vergleich zwischen den Wasserstoffisotopen H, D, T, Mu sowie eines schweren exotischen Isotops. „Wie sich zeigte, verhalten sich die vier schweren Isotopomere prinzipiell gleich“, so Manz. „Das leichteste Isotopomer BrMuBr wird dagegen durch eine vollkommen andere Art der chemischen Bindung zusammengehalten.“
BrHBr und seine schweren Analoga können eine lineare oder eine gewinkelte Form einnehmen. Bei der gewinkelten sind die beiden Bromatome verbunden. Bei der linearen sind beide Bromatome über das H-Atom verbunden, das sich allerdings sehr nah bei einem der beiden Br-Atome aufhält, während das andere wesentlich weiter entfernt ist. Van-der-Waals-Bindungen sorgen für den Zusammenhalt. Sie entstehen durch kurzzeitige Ladungsverschiebungen in einem Teilchen, die anziehend wirken.
Im Gegensatz dazu wird BrMuBr durch einen erst seit kurzem vermuteten völlig anderen Bindungstyp verbunden, die Schwingungsbindung: Die molekularen Fragmente werden dabei durch ihre Bewegung zusammengehalten. Das Myonium schwingt dabei im Übergangszustand zwischen den beiden Bromatomen. „Unsere Berechnungen zu BrMuBr sind der erste klare Beleg für die Existenz dieses neuen Bindungstyps“, so Manz. „Daneben sind sie der erste Nachweis, dass eine Isotopensubstitution die Art der chemischen Bindung fundamental ändern kann. Die verglichenen Isotopomere zeigen völlig verschiedene Strukturen, Symmetrien und vor allem verschiedene Energiebilanzen und Bildungsmechanismen der chemischen Bindungen des untersuchten Radikals.“
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.