Frequenzkamm im Bereich molekularer Fingerabdrücke
Silizium-Nanodraht erzeugt als optischer Wellenleiter einen breitbandigen Frequenzkamm im mittleren Infrarot
In einer in Nature Communications veröffentlichten Arbeit beschreibt eine internationale Forscher-Kollaboration um Frau Dr. Nathalie Picqué, Max-Planck Institut für Quantenoptik (MPQ) und Ludwig-Maximilians-Universität München (LMU) eine zuverlässige neue Technik zur Erzeugung eines breitbandigen optischen Frequenzkamms im mittleren infraroten Spektralbereich. Das Spektrum eines Lasers wird dabei in einem als Wellenleiter dienenden lithographisch hergestellten Silizium-Nanodraht schon bei kleinen Pulsenergien so drastisch verbreitert, dass ein kohärenter Frequenzkamm entsteht, dessen spektrale Breite mehr als eine Oktave umspannt. Kollaborationspartner sind die Universität Gent (Belgien), das Interuniversity MicroElectronics Center (Belgien), die Universität von Auckland (Neuseeland) und das Institut des Sciences Moléculaires d’Orsay (Frankreich).

Wenn Laserlicht im mittleren Infrarot in einem Wellenleiter aus einem Silizium-Nanodraht von rechteckigem Querschnitt geleitet wird, führen starke nichtlineare Effekte zu einer dramatischen spektralen Verbreiterung, ohne die Kammstruktur des Eingangsspektrums zu zerstören.
Abt. Laserspektroskopie, MPQ
Anfang der 2000er Jahre gelang es erstmals, extrem breitbandige „Superkontinua“ durch spektrale Verbreiterung von kurzen Laserpulsen in mikrostrukturierten Lichtleiterfasern zu erzeugen. Solche Superkontinua finden heute wichtige Anwendungen in verschieden Bereichen der Photonik, wie der optischen Kohärenztomographie, der optischen Nachrichtenübertragung, oder der Fluoreszenzmikroskopie. Die Technik war auch der Schlüssel zur Erzeugung von kohärenten optischen Frequenzkämmen, die mehr als eine Oktave umspannen. Das Spektrum eines solchen Frequenzkammes besteht aus einer großen Zahl diskreter Spektrallinien, deren Linienabstand genau der Pulswiederholrate entspricht. Solche Frequenzkämme eignen sich zur präzisen Messung optischer Frequenzen, denn sie erlauben einen einfachen und direkten Vergleich von optischen Frequenzen mit der Radiofrequenz einer Atomuhr. In der Molekülspektroskopie lassen sich alle Kammlinien gleichzeitig nutzen, um komplexe, breitbandige Spektren sehr schnell und mit hoher Empfindlichkeit zu vermessen.
Frequenzkämme im sichtbaren und nah-infraroten Spektralbereich sind heute kommerziell verfügbar. Der mittlere infrarote Spektralbereich (2-20µm) ist dagegen noch wenig erschlossen. Dort findet man die starken fundamentalen Schwingungsbanden der meisten Moleküle und zwei spektrale Transmissionsfenster der Atmosphäre. Die Entwicklung photonischer Technologien für diesen wichtigen Spektralbereich wird vielerorts mit Nachdruck betrieben. Viele Anwendungen in der Spektroskopie, den Materialwissenschaften, der Sicherheitstechnik, oder industriellen Prozesssteuerung, sowie der hochempfindliche Nachweis von Molekülen in der Chemie, Biologie oder Medizin würden unmittelbar von leistungsfähigeren photonischen Strahlquellen in mittleren Infraroten profitieren. Insbesondere sind neue Strategien für die Erzeugung von Frequenzkämmen in dieser spektralen Region von grosser Bedeutung für die Molekülwissenschaften. Leider gibt es jedoch nur wenige Wellenleiter-Materialien, die sich dort für die Erzeugung breitbandiger Frequenzkämme bei niedrigen Schwellenenergien eignen, und die Lösung der technischen Probleme bleibt eine große Herausforderung.
Prof. Theodor Hänsch ist seit 1986 Direktor der Abteilung Laserspektroskopie am MPQ und Professor für Experimentalphysik an der Ludwig-Maximilians-Universität München. Im Jahr 2005 erhielt er den Nobelpreis für Physik, gemeinsam mit Roy Glauber und John Hall, für seine Arbeiten in der Präzisionslaserspektroskopie, wobei insbesondere die Entwicklung der Frequenzkammtechnik gewürdigt wurde. Seit 2006 wird seine Forschung von der Max-Planck-Förderstiftung und der Carl Friedrich von Siemens Stiftung unterstützt.
Ein Team von Wissenschaftlern am MPQ hat nun mit Erfolg einen neuen Weg zur Erzeugung breiter Frequenzkämme im mittleren Infrarot aufgezeigt. Hierfür nutzen sie CMOS-kompatible nanophotonische Silizium-Wellenleiter auf einem Silicon-on-Insulator Chip. Mit hochgradig nichtlinearen Wellenleitern mit ingenieurgerecht kontrollierter Dispersion konnten sie phasenkohärente Frequenzkämme mit mehr als einer Oktave Breite von 1500 bis 3300 nm erzeugen. Im Gegensatz zu früheren Ansätzen sind die Wellenleiter chemisch stabil. Selbst nach mehreren Monaten wurden keine Änderungen im erzeugten Superkontinuum beobachtet. Nach weiterer Entwicklung sollte es möglich sein, auf Silizium-Basis bei Zimmertemperatur kohärente Frequenzkämme bis zu 8500 nm zu erzeugen. Auf längere Sicht könnten solche miniaturisierten Wellenleiter ein auf einem Chip integriertes Frequenzkamm-Spektrometer ermöglichen, das sich z.B. für den hochempfindlichen chemischen Spurennachweis eignet.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren

ZSX Primus IVi von Rigaku
Hochpräzise WDXRF-Analyse für industrielle Anwendungen
Maximale Empfindlichkeit und Durchsatz für leichte Elemente und komplexe Proben

NANOPHOX CS von Sympatec
Partikelgrößenanalyse im Nanobereich: Hohe Konzentrationen problemlos analysieren
Zuverlässige Ergebnisse ohne aufwändige Probenvorbereitung

S4 T-STAR von Bruker
TXRF-Spektrometer: Sub-ppb Nachweisgrenzen & 24/7 Analytik
Minimale Betriebskosten, weil Gase, Medien oder Laborausrüstung entfallen

ERASPEC von eralytics
Einfachste Kraftstoffanalyse in Sekunden mit ERASPEC
Bestimmung von bis zu 40 Kraftstoffparametern auf Knopfdruck

ALPHA II von Bruker
Chemische Analyse leicht gemacht: Kompaktes FT-IR-System
Steigern Sie die Effizienz Ihrer Routineanalysen mit benutzerfreundlicher Technologie

ZEEnit von Analytik Jena
Zeeman-Technik mit maximaler Empfindlichkeit und Applikationsvielfalt
Quergeheizte Graphitrohrofen für optimale Atomisierungsbedingungen und hohen Probendurchsatz

PlasmaQuant MS Elite von Analytik Jena
Massenspektrometer für hochempfindliche Forschungsanwendungen und niedrigste Nachweisgrenzen
Die Erfolgsformel in der LC-ICP-MS – PlasmaQuant MS-Serie und PQ LC

PlasmaQuant 9100 von Analytik Jena
Neues ICP-OES PlasmaQuant 9100 für komplexe Probenmatrices
Mehr sehen. Mehr wissen. ICP-OES vereinfacht Analyse matrixlastiger Proben

NEX CG II von Applied Rigaku Technologies
Elementaranalyse auf ppb-Niveau für exakte Ergebnisse

S2 PICOFOX von Bruker
Schnelle und präzise Spurenelementanalyse unterwegs
TXRF-Technologie für minimale Proben und maximale Effizienz

INVENIO von Bruker
FT-IR Spektrometer der Zukunft: INVENIO
Völlig frei aufrüstbares und konfigurierbares FT-IR Spektrometer

Agera von HunterLab Europe
Sparen Sie wertvolle Zeit: Farb- und Glanzmessung in Rekordzeit
Erfassen Sie den Farbeindruck der Probe genau so, wie ihn das menschliche Auge wahrnimmt

Micro-Z ULS von Rigaku
Schwefelgehalt in Kraftstoffen genau messen: WDXRF-Analysator
Zuverlässige Routineuntersuchungen mit 0,3 ppm Nachweisgrenze und kompaktem Design

2060 Raman Analyzer von Metrohm
Selbstkalibrierendes Inline-Raman Spektrometer
Feststoffe, Flüssigkeiten und Gase analysieren - für reproduzierbare, genaue Ergebnisse im Prozess

novAA® 800 von Analytik Jena
Der Analysator für Sie - novAA 800-Serie
Das zuverlässige Multitalent für die effiziente und kostengünstige Routineanalyse

contrAA 800 von Analytik Jena
contrAA 800 Serie – Atomic Absorption. Redefined
Kombiniert das Beste der klassischen Atomabsorption mit den Vorteilen von ICP-OES-Spektrometern

SPECORD PLUS von Analytik Jena
Die neue Generation der Zweistrahlphotometer von Analytik Jena
Der moderne Klassiker garantiert höchste Qualität

Mikrospektrometer von Hamamatsu Photonics
Ultrakompaktes Mikrospektrometer für vielseitige Anwendungen
Präzise Raman-, UV/VIS- und NIR-Messungen in tragbaren Geräten

BIOS ANALYTIQUE - Soluciones de Renting y Leasing para laboratorios von Bios Analytique
Ihr Spezialist für Vermietung und Leasing von Laborinstrumenten in Europa
Beim Finanzieren geht es nicht nur ums Geld verleihen - Es geht um Lösungen, die Wert schaffen

SR Series Spectrometer von Ocean Insight
Der neue Ocean SR2 liefert das beste SNR seiner Klasse für konfigurierbare Spektrometer
Hochgeschwindigkeits-Spektrenerfassung mit fortschrittlicher Signal-Rausch-Leistung

Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.