Mikrobielle Brennstoffzellen: Kupfer ist vorteilhafter als Kohlenstoff
Mikrobielle Brennstoffzellen beruhen, darin ist sich die Forschung einig, auf einem hochinteressanten Prinzip für die Energiegewinnung. Sie nutzen lebende Mikroorganismen unmittelbar für die Erzeugung von elektrischem Strom. Freie Elektronen, die bei Stoffwechselprozessen dieser Organismen entstehen, werden auf die Anode der Brennstoffzelle geleitet und setzen hier – unterstützt von einer geringen elektrischen Spannung – einen Stromkreislauf in Gang. Damit solche Brennstoffzellen in größerem Umfang für die Stromerzeugung eingesetzt werden können, müssen ihre Anoden allerdings aus einem Material gefertigt sein, das einerseits möglichst kostengünstig ist und andererseits eine hohe elektrische Leitfähigkeit besitzt.
Bisher galt Kohlenstoff wegen seiner Verträglichkeit mit lebenden Organismen, seiner Stabilität und der relativ geringen Herstellungskosten als dasjenige Material, das am ehesten für die Anoden mikrobieller Brennstoffzellen infrage kommt. Doch die eingeschränkte Leitfähigkeit kohlenstoffhaltiger Fasern hat dazu geführt, dass mikrobielle Brennstoffzellen als eine im Prinzip reizvolle, aber im Hinblick auf größere technologische Anwendungen wenig ergiebige Energiequelle angesehen wurden.
Neue Untersuchungen, die ein Team um Prof. Dr. Andreas Greiner (Universität Bayreuth) und Prof. Dr. Uwe Schröder (TU Braunschweig) kürzlich in der Fachzeitschrift „Energy & Environmental Science“ vorgestellt hat, kommen nun aber zu einem unerwarteten Ergebnis: Kupfer ist ein Material, das für die Anoden mikrobieller Brennstoffzellen und verwandter bioelektrochemischer Systeme hervorragend geeignet ist. Überraschend ist dieser Befund deshalb, weil Kupfer bisher als ein Metall eingestuft wurde, auf dessen Oberfläche sich auf Dauer keine Mikroorganismen ansiedeln können. Dabei hat man jedoch übersehen, dass diese antimikrobielle Wirkung sich nicht gegen elektrochemisch aktive Mikroorganismen auf Anoden richtet. Insbesondere Bakterien der Gattung Geobacter bilden auf Kupfer-Anoden eine stabile mikrobielle Schicht, die in der Regel dicker ist als die entsprechende Schicht auf den bisher üblichen Kohlenstoff-Fasern.
Dies gilt auch für die mikrobielle Schicht, die auf Anoden aus Gold oder Silber entsteht und hinsichtlich ihrer Dicke nur wenig hinter dem ‚Biofilm‘ auf Kupfer-Anoden zurückbleibt. Wie Kupfer galt auch Silber bisher als ein ausnahmslos antimikrobielles Metall. Es war insbesondere der Bayreuther Doktorand Markus Langner, der verschiedene Metalle daraufhin getestet hat, inwieweit sie als Materialien für Anoden geeignet sind.
Kupfer hat den entscheidenden Vorteil, dass es im Vergleich mit Kohlenstoff-Fasern eine erheblich höhere elektrische Leitfähigkeit hat. Zudem haben die Wissenschaftler in Bayreuth und Braunschweig errechnet, dass Kupfer-Anoden deutlich preisgünstiger sind. Dieser Unterschied wird erst dann klar erkennbar, wenn man nicht allein die Rohstoffpreise für Kupfer und Kohlenstoff, sondern zugleich die Materialmengen in Betracht zieht, die für funktionsfähige Anoden in mikrobiellen Brennstoffzellen tatsächlich benötigt werden. Weil Kupfer eine sehr gute elektrische Leitfähigkeit hat, können Kupfer-Anoden sehr dünn sein, so dass Material eingespart wird.
„Unsere Forschungsergebnisse zeigen, dass sich mit Kupfer-Anoden die Leistungsfähigkeit bioelektrochemischer Systeme erheblich steigern, deren Produktionskosten aber deutlich senken lassen“, erklärt Prof. Dr. Andreas Greiner. „Damit wächst die Chance, dass mikrobielle Brennstoffzellen in Zukunft häufiger für die Energiegewinnung eingesetzt werden und so einen Beitrag zur ‚Energiewende‘ leisten können.“
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Multi-Liter Hydrogen Gasgenerator von VICI
Labor-Wasserstoffversorgung neu definiert
Bis zu 18 l/min Wasserstoff mit 99,99997% Reinheit und intuitiver Touchscreen-Steuerung
CATLAB Catalysis and Thermal Analysis von Hiden Analytical
Ein System zur Katalysatorcharakterisierung, kinetischen und thermodynamischen Messungen
Integriertes Mikroreaktor-Massenspektrometer für Reaktionstests, TPD/TPR/TPO und Pulschemisorption.
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.