Nano für berührungsfreie Touchscreens

25.09.2015 - Deutschland

LMU-Chemiker haben erstmals photonische Kristalle aus dünnsten Nanoschichten entwickelt, die extrem sensitiv auf Feuchte reagieren. „Sie ändern ihre Farbe abhängig von der Feuchtigkeit. Das prädestiniert sie für die Entwicklung von sogenannten Touchless-Endgeräten, die sich ohne Berührung steuern lassen“, sagt Professor Bettina Lotsch vom Department Chemie der LMU und dem Max-Planck-Institut für Festkörperforschung.

LMU München

Die Abbildungsserie zeigt, wie sich mithilfe des von den LMU-Forschern entwickelten photonischen Sensors die Fingerbewegungen farblich abbilden lassen. Hierbei reagiert der photonische Kristall berührungslos auf die feuchte Atmosphäre des Fingers.

„Der menschliche Finger ist von einer Feuchtigkeitsatmosphäre umgeben“, erläutert Katalin Szendrei aus der Arbeitsgruppe von Professor Lotsch das Prinzip des neuen photonischen Sensors. „Unser Sensor erfasst den Grad der Feuchtigkeit und reagiert darauf mit einer entsprechenden Änderung der Farbe – und das ohne Berührung.“ Das macht das neue Nanomaterial für die Anwendung in berührungslosen Touchscreens interessant. „Vor allem bei Bildschirmoberflächen, die von vielen Menschen genutzt werden, etwa von Fahrkarten- oder Bankautomaten, hätte eine berührungslose Navigation deutliche Hygienevorteile“, beschreibt Szendrei eine mögliche Anwendung.

Neues System besticht durch bislang unerreichte Empfindlichkeit und Reaktionszeiten

Photonische Kristalle kommen in der Natur beispielsweise in Perlmutt oder den Farben von Schmetterlingsflügeln vor. Dem Team um Lotsch ist es gelungen, photonische Kristalle auf Basis von zweidimensionalen Antimonphosphaten als aktive Materialien zu entwickeln. Das neue Nanomaterial ist chemisch stabil, transparent und einfach herzustellen. Gegenüber anderen Sensoren auf Nanoschicht-Basis überzeugt der photonische Kristall durch kürzere Ansprechzeiten, eine deutlich höhere Empfindlichkeit und gute Langzeitstabilität. „Diese einmalige Kombination von Eigenschaften ermöglicht es, Fingerbewegungen farbkodiert in Echtzeit abzubilden“, sagt Pirmin Ganter aus der Arbeitsgruppe von Bettina Lotsch. Zudem ist das neue System luftstabil und damit nicht nur im Labor, sondern auch unter natürlichen Umweltbedingungen voll funktionsfähig.

Die LMU-Chemiker haben bereits ein Patent für ihre Neu-Entwicklung eingereicht. Inzwischen arbeiten sie gemeinsam mit dem Fraunhofer EMFT in München an der Realisierung eines Prototyps, der zusätzlich zur Farbkodierung auch einen elektronischen Auslesevorgang erlaubt.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...