Topologische Isolatoren: Schichten statt Mischen

Forscherteam verbessert Energieeffizienz topologischer Isolatoren

20.11.2015 - Deutschland

Eine zu starke Erwärmung von Computerchips ist ein großes Hindernis für die Entwicklung schnellerer und leistungsfähigerer Rechner und Mobiltelefone. Abhilfe verspricht eine erst vor wenigen Jahren entdeckte Materialklasse: topologische Isolatoren, die Strom mit geringerem Widerstand und weniger Wärmeentwicklung leiten als herkömmliche Materialien. Noch befindet sich die Forschung daran im Grundlagenstadium. Ein Team aus Jülich und Aachen hat nun eine Möglichkeit gefunden, die gewünschten Leitungseigenschaften solcher Materialien genauer und zuverlässiger einzustellen als es bisher möglich war.

Copyright: Forschungszentrum Jülich

Durch Variation der Schichtdicke von Halbleiter-Sandwiches aus Silizium (grau), Wismut-Tellurid, einem n-Halbleiter (rot), und Antimon-Tellurid, einem p-Halbleiter (grün), lassen sich topologische Isolatoren maßschneidern, zeigen die Untersuchungen Jülicher und Aachener Forscher. Die Qualität ihrer mittels Molekularstrahlepitaxie erzeugten Schichten überprüften sie mit ultrahochauflösender Rasterelektronenmikroskopie. Auf der linken Würfelkante sind die atomaren Lagen zu erkennen.

So genannte "to­po­lo­gische" Materialien besitzen an ihren Oberflächen andere physikalische Eigenschaften als im Inneren. Topologische Isolatoren sind im Materialinneren praktisch Isolatoren, aber an ihren Oberflächen und Rändern leiten sie elektrischen Strom fast wie auf Schienen: schneller, mit geringerem Widerstand und weniger Wärmeentwicklung als herkömmliche Materialien. Zusätzlich fungieren die Schienen für Elektronen als Einbahnstraßen. Der Eigendrehimpuls der Elektronen – der sogenannte Spin – bestimmt, in welche Richtung die Elektronen fließen können. Auch diese Materialeigenschaft ist nützlich für die Informationsverarbeitung und könnte die Entwicklung neuer spintronischer Bauelemente ermöglichen.

Forscher des Jülicher Peter Grünberg Instituts und der RWTH Aachen zeigten nun, wie sich die Leitfähigkeit und der Energiebedarf dieser Materialien optimieren lassen. Ihr Erfolgsrezept lautet stark vereinfacht: schichten statt mischen. Prof. Detlev Grützmacher vom Peter Grünberg Institut hatte die entscheidende Idee: "Anstatt zwei Halbleiter unterschiedlichen Typs wie üblich zu legieren, um daraus einen topologischen Isolator zu gewinnen, haben wir mittels Molekularstrahlepitaxie beide Halbleiter Atomschicht für Atomschicht aufeinander geschichtet, dies wiederum auf einer Siliziumträgerschicht." Molekularstrahlepitaxie ist eine hochpräzise Methode, dünne kristalline Schichten herzustellen, und wird zunehmend nicht mehr nur in der Forschung sondern auch zur industriellen Produktion von Halbleiterstrukturen eingesetzt.

Auf diese Weise konnten die Forscher den atomaren Aufbau exakt kontrollieren, was sie mit ultrahochauflösender Elektronenmikroskopie dokumentierten. "Die perfekte atomare Zusammensetzung topologischer Isolatoren ist ganz entscheidend für die elektronischen Eigenschaften und damit die Energieeffizienz, aber bei Legierungen nur schwer kontrollierbar", erläutert Dr. Lukasz Plucinski vom Peter Grünberg Institut.

Welche Schichtdicken mit optimalen Leitungseigenschaften einhergehen, fanden die Forscher mit der Technik der winkelaufgelösten Photoemissionsspektroskopie heraus. Dabei werden Proben mit Photonen beschossen, die Elektronen aus dem Material herauslösen. Deren Energie und Austrittswinkel werden gemessen und geben Auskunft über die Energie und die Verteilung der Elektronen an der Oberfläche der Probe.

Topologische Isolatoren können grundsätzlich auch mit Hilfe externer elektrischer Felder in Halbleiterlegierungen und anderen Materialien erzeugt werden. Bei der Sandwichmethode, die die Wissenschaftler im Rahmen der Jülich Aachen Research Alliance, Sektion "Future Information Technology", gemeinsam entwickelt haben, ist dieser technische Aufwand unnötig und das Trägermaterial Silizium vereinfacht eine spätere Integration in Anwendungen.

Im vom Jülicher Peter Grünberg Institut koordinierten Virtuellen Institut für topologische Isolatoren (VITI) erforschen Wissenschaftler darüber hinaus weitere Nutzungsmöglichkeiten des neuen Materials in der Grundlagenforschung. So könnte es zum Beispiel den Nachweis neuer bisher nur theoretisch vorhergesagter Quantenphänomene ermöglichen, etwa von Quasipartikeln aus Elektronen und Leitungslöchern, die ein so genanntes topologisches Exziton-Kondensat bilden.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren
Themenwelt anzeigen
Themenwelt Spektroskopie

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

50+ Produkte
30+ White Paper
40+ Broschüren