Dotierung von organischen Halbleitern analysiert
Organische Halbleiter werden zum Beispiel für Solarzellen oder Leuchtdioden (OLEDs) genutzt. Bislang war jedoch wenig bekannt, wie „Dotier“-Moleküle strukturell in organische Halbleiter integriert werden. Dies hat nun ein Team von der Humboldt-Universität zu Berlin und dem Helmholtz-Zentrum Berlin an BESSY II analysiert. Die Ergebnisse sind überraschend: Die Moleküle verteilen sich nicht gleichmäßig im Wirtsgitter, sondern bilden sogenannte Ko-Kristallite mit dem Wirtsmaterial. Der „dotierte“ organische Halbleiter besteht damit aus einer Matrix von „Original“-Kristalliten, in die „Misch“-Kristallite eingebettet sind. Diese Misch-Kristallite übernehmen die Rolle der „Dotier“-Moleküle.

Röntgenstreuung zeigt links bei reinem 4T (oben) und P3HT (unten) die typischen Reflexe des Wirtsgitters. Bei den stark dotierten Materialien tauchen andere Reflexe auf, die das Vorhandens
HZB
Unsere moderne Halbleitertechnologie basiert auf Silizium, einem anorganischen Halbleitermaterial, das für den Einsatz in elektronischen Bauelementen mit Fremdatomen dotiert wird. Doch auch organische Festkörper aus konjugierten Molekülen oder Polymeren besitzen halbleitende Eigenschaften, die Anwendungen in der organischen Elektronik ermöglichen. Das enorme Potenzial der organischen Elektronik hat sich in den letzten Jahren am Beispiel von Leuchtdioden (OLEDs) deutlich gezeigt.
Gastmoleküle im Wirtsgitter
So lassen sich zum Beispiel Oligothiophen (4T) und Polythiophen (P3HT), zwei typische organische Halbleiter, mit einer zweiten Molekülsorte, einem starken Elektronenakzeptor (F4TCNQ), „dotieren“ und dadurch gezielt hinsichtlich ihrer Leitfähigkeit beeinflussen. Wie sich allerdings diese Gastmoleküle in das Wirtsgitter der organischen Halbleiter strukturell integrieren, war bislang kaum bekannt. Daher wurde, in Analogie zu anorganischen Halbleitern, bisher stets eine homogene Verteilung vorausgesetzt.
Hinweise auf Besonderheiten
Ein internationales Team, geleitet von der gemeinsamen Forschergruppe „Molekulare Systeme“ am HZB und der Humboldt-Universität zu Berlin, konnte nun zeigen, dass dies weder für Oligothiophen noch Polythiophen der Fall ist. Die Gruppe um Dr. Ingo Salzmann und Prof. Dr. Norbert Koch hatte zuvor bereits an anderen Systemen experimentell und theoretisch analysiert, wie sich die Dotierung von organischen Halbleitern auf deren elektronische Struktur und damit deren Leitfähigkeit auswirkt. Daraus ergaben sich Hinweise auf Besonderheiten dieser Materialklasse, bei denen die Hybridisierung der Molekülorbitale eine Schlüsselrolle spielt.
Verschieden stark dotierte Proben
Deshalb stellten sie nun eine Serie von verschieden stark dotierten organischen Dünnschichten her und untersuchten diese Proben mit Röntgenbeugung an der KMC-2-Beamline, die Dr. Daniel Többens betreut. Dadurch konnten sie die kristalline Struktur in Abhängigkeit von der Stärke der Dotierung präzise bestimmen.
Ko-Kristallite als "Dotanden"
Ihre Ergebnisse zeigten, sowohl für 4T als auch für P3HT, dass sich die Gastmoleküle - in krassem Gegensatz zur Erwartung -– keineswegs gleichmäßig in das Wirtsgitter des organischen Halbleiters einbauen. In der reinen kristallinen Wirtsmatrix bildet sich stattdessen eine zweite kristalline Phase aus Wirt/Gast Ko-Kristalliten. Diese Ko-Kristalle übernehmen nun anstelle des eigentlichen Dotiermoleküls die Rolle des Dotanden.
Verständnis ermöglicht mehr Kontrolle
„Es ist wichtig, die grundlegenden Prozesse bei der Dotierung organischer Halbleiter genauer zu verstehen“, erklärt Salzmann: „Wenn wir solche Materialien erfolgreich in Anwendungen einsetzen möchten, müssen wir ihre elektronischen Eigenschaften genauso präzise kontrollieren können, wie es bei anorganischen Halbleitern heute selbstverständlich ist.“
Originalveröffentlichung
Originalveröffentlichung
Henry Méndez, Georg Heimel, Stefanie Winkler, Johannes Frisch, Andreas Opitz, Katrein Sauer, Berthold Wegner, Martin Oehzelt, Christian Röthel, Steffen Duhm, Daniel Többens, Norbert Koch & Ingo Salzmann; "Charge-transfer crystallites as molecular electrical dopants"; Nature Comm.; 2015
Organisationen
Weitere News aus dem Ressort Wissenschaft

Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.
Meistgelesene News
Weitere News von unseren anderen Portalen
Zuletzt betrachtete Inhalte

Rätsel um Effizienzverlust von Zinkoxid-basierten Farbstoffsolarzellen aufgeklärt

Startups bei Digitalisierung klare Vorreiter - Neue Studie zum Thema Arbeit und Gesundheit in jungen Unternehmen
Chemischen Reaktionen auf der Spur - Forscher entwickeln lichtadressierbare Sensoren
Das sitzt: Klebstofftrends 2013
