Jenseits der Farben des Regenbogens
Ternäre Halbleiter-Nanostrukturen erweitern den nutzbaren Spektralbereich des Sonnenlichts von Solarzellen
Das derzeit in Solarzellen hauptsächlich verwendete kristalline Silizium deckt effektiv nur den sichtbaren Bereich des Sonnenlichtspektrums ab. Andere Halbleitermaterialien erreichen weitere Spektralregionen, aber die ideale Photozelle sollte kontinuierlich im gesamten Strahlungspektrum vom Ultravioletten bis zum Infraroten die Strahlung aufnehmen und umwandeln können. Shu-Hong Yu und Jun Jiang von der University of Science and Technology in Hefei (China) und ihre Mitarbeiter haben nun ein nanostrukturiertes Halbleitersystem entwickelt, das effektiv ultraviolettes, sichtbares und nahinfrarotes Licht absorbiert. Dieses Ternärhybrid aus Zink-, Cadmium und Kupfersulfid hat die Form von winzigen, strukturierten Stäbchen und weist eine ideale Anordnung der Bandlücken auf, um die durch Licht erzeugten Ladungsträger effektiv zu sammeln und weiterzuleiten.
Auf Nanostäben aus Zinksulfid ordneten die Wissenschaftler Cadmiumsulfidhüllen wie Perlen auf einer Kette an. Das Zinksulfid absorbiert dabei das UV-Licht, während das Cadmiumsulfid den Bereich des sichtbaren Lichts abdeckt. Für die IR-Absorption wählten die Wissenschaftler als dritte Komponente fehlstellenbehaftete Kupfersulfidkristalle, die im nahen Infrarot eine besondere Absorptionsart aufweisen: die Oberflächen-Plasmonenresonanz. "Diese Heteronanostäbe absorbieren quer über fast den gesamten Spektralbereich der Sonnenenergie", berichten die Wissenschaftler über ihr Ergebnis.
Die Leistungsfähigkeit der Nanostäbe testeten Yu und seine Mitarbeiter in der elektrochemischen Wasserspaltung. Unter Beleuchtung im gesamten Spektralbereich entwickelten die Elektroden einen deutlichen Photostrom: der erste experimentelle Hinweis auf ein funktionierendes Photovoltaiksystem. Die große Errungenschaft dieser Arbeit ist jedoch die perfekte Justierung der empfindlichen Kontaktstellen zwischen den verschiedenen Halbleitermaterialien. Die Kontakte ordnen die jeweiligen Energielücken der drei Halbleiterkristalle so an, dass das Material die Photoelektronen effizient sammeln und weiterleiten kann. "Durch eine solche gestaffelte Anordnung werden die photoerzeugten Elektronen und Löcher in der ternären hybriden Nanostruktur effektiv voneinander getrennt", berichten die Autoren. Obwohl weitere Experimente nötig sind, weist dieses System auf effizientere Solarzellen hin, die auch jenseits der Farben des Regenbogens operieren.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.