Direkte Beobachtung einer katalytischen Reaktion
Forscher beobachten den Ablauf einer chemischen Reaktion an einer katalytisch wirkenden Metalloberfläche
A. Riss/TU Munich, adapted from A. Riss et al., Nature Chemistry (2016), DOI: 10.1038/nchem.2506
Chemische Umwandlungen an der Grenzfläche zwischen fester und flüssiger beziehungsweise fester und gasförmiger Phase von Stoffen bilden das Herzstück von Schlüsselprozessen der Herstellung von Chemikalien in industriellem Maßstab. Der mikroskopische Mechanismus dieser oberflächenkatalysierten organischen Reaktion stellt für die moderne heterogene Katalyse und ihre Anwendung auf großtechnische chemische Verfahren eine große Herausforderung dar. Konkurrierende Reaktionspfade, die zu einer Vielzahl von reaktiven Zwischenprodukten sowie zu unerwünschten Nebenprodukten führen, erschweren oft die Untersuchung der zugrunde liegenden Reaktionsmechanismen industriell angewandter chemischer Reaktionen, wie beispielsweise der Umwandlung organischer Rohstoffe in komplexe, hochwertige Chemikalien an der Oberfläche eines heterogenen Katalysatorbetts. Die Identifizierung der Struktur kurzlebiger reaktiver Zwischenprodukte gestaltet sich hierbei aufgrund ihrer geringen Konzentration im Reaktionsgemisch besonders schwierig.
In der aktuellen Arbeit wurden die chemischen Strukturen verschiedener Zwischenschritte einer mehrstufigen Reaktionskaskade von Endiin-Molekülen an einer Silberoberfläche mittels Rasterkraftmikroskopie im Nicht-Kontakt-Modus (noncontact atomic force microscopy, nc-AFM) abgebildet. Für diese Messungen wurde die AFM-Spitze mit einem Kohlenmonoxid-Molekül funktionalisiert, um eine besonders hohe Auflösung zu erzielen. Die Identifizierung der genauen Bindungsstruktur der verschiedenen Intermediate erlaubte die Bestimmung der komplexen Sequenz von Umwandlungen entlang des Reaktionspfades von den Reaktanten über die Zwischenprodukte bis hin zu den Produkten und darüber hinaus die Entschlüsselung des mikroskopischen Mechanismus hinter dem komplizierten dynamischen Verhalten. „Es war eindrucksvoll, die chemische Struktur der reaktiven Zwischenprodukte in diesem komplexen System direkt messen und theoretisch beschreiben zu können“, sagte Felix Fischer, Professor für Chemie an der University of California in Berkeley und einer der führenden Autoren der Studie.
„Dies ist ein großer Schritt für die chemische Synthese“, ergänzte Angel Rubio, ebenfalls einer der führenden Autoren sowie Direktor am Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg und Professor für Physik an der Universität des Baskenlandes. „Allerdings wollten wir noch einen Schritt weiter gehen und verstehen, warum die Zwischenprodukte an der Oberfläche stabilisiert werden – dies kommt in einem flüssigen Reaktionsmedium nicht vor.“ Eine Kombination aufwendiger, moderner numerischer Berechnungen und klassischer analytischer Methoden, die den Ablauf sequentieller chemischer Reaktionen beschreiben, hat ergeben, dass es nicht ausreicht, die Potentialfläche zu berücksichtigen (d.h. die Energien der Zwischenstufen entlang des Reaktionspfades und die zugehörigen Aktivierungsenergien für eine weitere Umwandlung), sondern dass Energiedissipation zum Substrat und Veränderungen der molekularen Entropie eine kritische Rolle für die Stabilisierung der Zwischenprodukte spielen. Die Oberfläche – und insbesondere die Wechselwirkung molekularer Radikale mit der Oberfläche – spielt sowohl für die Entropie als auch für die selektive Dissipation eine entscheidende Rolle. Hierdurch werden grundlegende Unterschiede zwischen Reaktionen an Oberflächen und Chemie in der Gasphase oder in Lösung deutlich.
„Die ergiebige Zusammenarbeit zwischen Theorie und Experiment ermöglichte es uns, die mikroskopischen Triebkräfte zu identifizieren, welche die Reaktionskinetik bestimmen“, sagte Alexander Riss, Erstautor der Studie. Dieses fundamentale Verständnis, das durch das Zusammenspiel experimenteller Messungen auf Einzelmolekülniveau und moderner theoretischer Berechnungen auf Hochleistungsrechnern erreicht wurde, stellt einen grundlegenden Meilenstein in der Analyse chemischer Reaktionen dar. Durch Einzelmolekülmessungen war es in dieser Arbeit möglich, Beschränkungen konventioneller spektroskopischer Verfahren (die über Ensembles verschiedener Moleküle mitteln würden) zu umgehen und so ein atomares Bild der Reaktionsmechanismen, der treibenden Kräfte chemischer Reaktionen, und der Reaktionskinetik darzustellen. Diese neuen Erkenntnisse liefern bisher unerforschte Ansatzpunkte für die Entwicklung und Optimierung heterogener Katalysesysteme, für die Entwicklung neuartiger Syntheseverfahren in der kohlenstoffbasierten Nanotechnologie, sowie für Anwendungen in der Biochemie und den Materialwissenschaften.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Synthese
Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.
Themenwelt Synthese
Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.