In diesen Solarzellen haben Elektronen den Dreh raus
FAU/Daniel Niesner
Die Ergebnisse des Erlanger Teams des Lehrstuhls für Festkörperphysik, des i-Meet am Department für Materialwissenschaften und des Bayerischen Zentrums für Angewandte Energieforschung wurden jetzt im Fachmagazin Physical Review Letters veröffentlicht und von der Redaktion als Editor’s Suggestion besonders hervorgehoben.
Elektronen sind die Elementarteilchen, die elektrische Ladung transportieren, und so als Strom unser modernes Leben ermöglichen. Neben ihrer Ladung tragen die Elektronen auch einen Spin. Der Spin macht das Elektron zu einem winzigen Magneten. In den meisten Materialien kann dieser Magnet beliebig zur Bewegungsrichtung des Elektrons orientiert sein. Nur unter Ausnutzung ganz bestimmter Effekte lässt sich der Spin ausrichten.
Wissenschaftler suchen aktiv nach Materialien, in denen eine solche Ausrichtung stattfindet, da sich damit neuartige Elektroniken entwickeln ließen. Rechnungen haben gezeigt, dass dies in organisch-anorganischen Halbleitern mit Perowskit-Struktur der Fall sein könnte. Diese Kristalle zeichnen sich dadurch aus, dass sie anorganische Komponenten (Blei oder Zinn, und Iod oder Brom) mit organischen Molekülen verbinden, und die wünschenswerten Eigenschaften beider Materialklassen kombinieren. Die Materialien haben in den letzten Jahren für Aufsehen gesorgt durch ihre hohe Effizienz in Solarzellen, Lasern, Leuchtdioden, sowie in Detektoren für sichtbares Licht, UV- oder Röntgenstrahlung.
Im Experiment konnte die Ausrichtung des Spins in dem Material jetzt erstmalig direkt nachgewiesen werden. Die Ausrichtung wird durch einen Effekt erreicht, der nach dem ukrainischen Physiker Emmanuil I. Raschba benannt ist. Dabei zeigt der Spin des Elektrons wie eine Magnetnadel stets senkrecht zu elektrischen Feldern, die durch Verzerrungen im Material erzeugt werden. Wissenschaftler der FAU konnten den stärksten bis heute bekannten Raschba-Effekt nachweisen. Die Ergebnisse liefern einerseits eine Grundlage für die Erklärung und Optimierung der bisher nur teilweise verstandenen hohen Effizienz von Solarzellen und Lasern aus organisch-anorganischen Perowskit-Halbleitern. Durch die Ausrichtung des Spins werden nämlich Stöße der Elektronen mit dem Gitter und mit anderen Elektronen reduziert, wodurch weniger Wärmeverluste zu verzeichnen sind. Andererseits sind völlig neue Anwendungen denkbar, in denen der Spin selbst durch Anlegen von Spannung manipuliert und als Datenspeicher oder für Rechenoperationen genutzt wird. Ein Spin-basierter Rechner könnte weit energieeffizienter arbeiten als heutige Computer.
Originalveröffentlichung
Daniel Niesner et. al.; "Giant Rashba Splitting in CH3NH3PbBr3 Organic-Inorganic Perovskite"; Physical Review Letters; 2016
Meistgelesene News
Originalveröffentlichung
Daniel Niesner et. al.; "Giant Rashba Splitting in CH3NH3PbBr3 Organic-Inorganic Perovskite"; Physical Review Letters; 2016
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.