Graphen als effektiver Ionenfilter?

Simulationen deuten darauf hin, dass Graphen sich zu einem abstimmbaren Ionenfilter ausdehnen kann

28.11.2018 - USA

Forscher des National Institute of Standards and Technology (NIST) haben Simulationen durchgeführt, die darauf hindeuten, dass Graphen, zusätzlich zu seinen vielen anderen nützlichen Eigenschaften, mit speziellen Poren modifiziert werden kann, um als abstimmbarer Filter oder Sieb für Ionen (geladene Atome) in einer Flüssigkeit zu dienen.

NIST

NIST-Forscher führten Simulationen einer Graphenmembran mit sauerstoffausgekleideten Poren durch, die in eine flüssige Lösung von Kaliumionen (geladene Atome) getaucht ist, die unter bestimmten Bedingungen in den Poren eingeschlossen werden kann. Eine leichte Dehnung des Graphens erhöht den Ionenfluss durch die Poren erheblich.

Das Konzept, das auch mit anderen Membranmaterialien funktionieren kann, könnte Anwendungen wie nanoskalige mechanische Sensoren, Wirkstoffabgabe, Wasserreinigung und Siebe oder Pumpen für Ionengemische ähnlich biologischen Ionenkanälen beinhalten, die für die Funktion lebender Zellen entscheidend sind.

"Stellen Sie sich so etwas wie ein feinmaschiges Küchensieb vor, durch das Zucker fließt", sagte Projektleiter Alex Smolyanitsky. "Sie dehnen das Sieb so, dass jedes Loch im Gewebe 1-2 Prozent größer wird. Man würde erwarten, dass der Fluss durch dieses Netz um etwa den gleichen Betrag erhöht wird. Nun, hier steigt sie sogar um 1.000 Prozent. Ich denke, das ist ziemlich cool, mit einer Vielzahl von Anwendungen."

Wenn es experimentell möglich wäre, wäre dieses Graphensieb der erste künstliche Ionenkanal, der eine exponentielle Zunahme des Ionenflusses beim Strecken bietet und Möglichkeiten für schnelle Ionentrennungen oder Pumpen oder eine präzise Salzgehaltskontrolle bietet. Kollaborateure planen Laborstudien dieser Systeme, sagte Smolyanitsky.

Graphen ist eine Schicht aus Kohlenstoffatomen, die in Sechsecken angeordnet ist, ähnlich der Form von Hühnerdraht, die Strom leitet. Die NIST-Molekulardynamiksimulationen konzentrierten sich auf eine Graphenplatte von 5,5 x 6,4 Nanometer (nm) Größe und mit kleinen Löchern, die mit Sauerstoffatomen ausgekleidet waren. Diese Poren sind Kronenether - elektrisch neutrale kreisförmige Moleküle, die dafür bekannt sind, Metallionen einzufangen. Eine frühere NIST-Simulationsstudie zeigte, dass diese Art von Graphenmembran für die Nanofluidik verwendet werden kann.

In den Simulationen wurde das Graphen in Wasser suspendiert, das Kaliumchlorid enthält, ein Salz, das sich in Kalium- und Chloridionen aufspaltet. Die Kronenetherporen können Kaliumionen einfangen, die eine positive Ladung haben. Die Fang- und Freisetzungsraten können elektrisch gesteuert werden. Ein elektrisches Feld unterschiedlicher Stärke wurde angelegt, um den durch die Membran fließenden Ionenstrom anzutreiben.

Die Forscher simulierten dann das Ziehen an der Membran mit verschiedenen Kräften, um die Poren zu dehnen und zu erweitern, wodurch der Fluss der Kaliumionen durch die Membran stark erhöht wurde. Das Dehnen in alle Richtungen hatte den größten Effekt, aber schon das Ziehen in nur einer Richtung hatte einen Teileffekt.

Forscher fanden heraus, dass die unerwartet starke Zunahme des Ionenflusses auf ein subtiles Zusammenspiel einer Reihe von Faktoren zurückzuführen ist, darunter die Dicke des Graphens, die Wechselwirkungen zwischen Ionen und der umgebenden Flüssigkeit und die Wechselwirkungen zwischen Ionen und Poren, die schwächer werden, wenn die Poren leicht gestreckt werden. Es gibt ein sehr empfindliches Gleichgewicht zwischen Ionen und ihrer Umgebung, sagte Smolyanitsky.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

VEGAPULS | VEGABAR | VEGASWING

VEGAPULS | VEGABAR | VEGASWING von VEGA Grieshaber

Füllstände cybersicher überwachen - so geht’s

Erfahren Sie mehr über den einzigartigen Sensor für flüssige und feste Medien

Füllstandmesstechnik
SprayMaster inspex

SprayMaster inspex von LaVision

Qualitätsprüfung für Ihren Sprühprozess durch digitale Spray- und Partikelanalyse

Verlässlich, automatisiert, digital – Die Geometrie-Messung Ihres Sprühverfahrens in Echtzeit

Sprayanalysensysteme
FireSting-PRO

FireSting-PRO von PyroScience

Neues faseroptisches Messgerät: Präzise Messungen selbst in kleinsten Volumen

Messen Sie pH, Sauerstoff und Temperatur sogar unter sterilen Bedingungen

Messgeräte
VIONIC powered by INTELLO

VIONIC powered by INTELLO von Metrohm

Der neue Potentiostat ideal für Batterie-, Brennstoffzellen- und Elektrolyseapplikationen

VIONIC powered by INTELLO

Potentiostate
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Sensortechnik

Die Sensortechnik hat die chemische Industrie revolutioniert, indem sie präzise, zeitnahe und zuverlässige Datenbereitstellung in einer Vielzahl von Prozessen ermöglicht. Vom Überwachen kritischer Parameter in Produktionslinien bis hin zur Früherkennung potenzieller Störungen oder Gefahren – Sensoren sind die stillen Wächter, die Qualität, Effizienz und Sicherheit gewährleisten.

4 Produkte
2 White Paper
4 Broschüren
Themenwelt anzeigen
Themenwelt Sensortechnik

Themenwelt Sensortechnik

Die Sensortechnik hat die chemische Industrie revolutioniert, indem sie präzise, zeitnahe und zuverlässige Datenbereitstellung in einer Vielzahl von Prozessen ermöglicht. Vom Überwachen kritischer Parameter in Produktionslinien bis hin zur Früherkennung potenzieller Störungen oder Gefahren – Sensoren sind die stillen Wächter, die Qualität, Effizienz und Sicherheit gewährleisten.

4 Produkte
2 White Paper
4 Broschüren