Graphen als effektiver Ionenfilter?
Simulationen deuten darauf hin, dass Graphen sich zu einem abstimmbaren Ionenfilter ausdehnen kann
NIST
Das Konzept, das auch mit anderen Membranmaterialien funktionieren kann, könnte Anwendungen wie nanoskalige mechanische Sensoren, Wirkstoffabgabe, Wasserreinigung und Siebe oder Pumpen für Ionengemische ähnlich biologischen Ionenkanälen beinhalten, die für die Funktion lebender Zellen entscheidend sind.
"Stellen Sie sich so etwas wie ein feinmaschiges Küchensieb vor, durch das Zucker fließt", sagte Projektleiter Alex Smolyanitsky. "Sie dehnen das Sieb so, dass jedes Loch im Gewebe 1-2 Prozent größer wird. Man würde erwarten, dass der Fluss durch dieses Netz um etwa den gleichen Betrag erhöht wird. Nun, hier steigt sie sogar um 1.000 Prozent. Ich denke, das ist ziemlich cool, mit einer Vielzahl von Anwendungen."
Wenn es experimentell möglich wäre, wäre dieses Graphensieb der erste künstliche Ionenkanal, der eine exponentielle Zunahme des Ionenflusses beim Strecken bietet und Möglichkeiten für schnelle Ionentrennungen oder Pumpen oder eine präzise Salzgehaltskontrolle bietet. Kollaborateure planen Laborstudien dieser Systeme, sagte Smolyanitsky.
Graphen ist eine Schicht aus Kohlenstoffatomen, die in Sechsecken angeordnet ist, ähnlich der Form von Hühnerdraht, die Strom leitet. Die NIST-Molekulardynamiksimulationen konzentrierten sich auf eine Graphenplatte von 5,5 x 6,4 Nanometer (nm) Größe und mit kleinen Löchern, die mit Sauerstoffatomen ausgekleidet waren. Diese Poren sind Kronenether - elektrisch neutrale kreisförmige Moleküle, die dafür bekannt sind, Metallionen einzufangen. Eine frühere NIST-Simulationsstudie zeigte, dass diese Art von Graphenmembran für die Nanofluidik verwendet werden kann.
In den Simulationen wurde das Graphen in Wasser suspendiert, das Kaliumchlorid enthält, ein Salz, das sich in Kalium- und Chloridionen aufspaltet. Die Kronenetherporen können Kaliumionen einfangen, die eine positive Ladung haben. Die Fang- und Freisetzungsraten können elektrisch gesteuert werden. Ein elektrisches Feld unterschiedlicher Stärke wurde angelegt, um den durch die Membran fließenden Ionenstrom anzutreiben.
Die Forscher simulierten dann das Ziehen an der Membran mit verschiedenen Kräften, um die Poren zu dehnen und zu erweitern, wodurch der Fluss der Kaliumionen durch die Membran stark erhöht wurde. Das Dehnen in alle Richtungen hatte den größten Effekt, aber schon das Ziehen in nur einer Richtung hatte einen Teileffekt.
Forscher fanden heraus, dass die unerwartet starke Zunahme des Ionenflusses auf ein subtiles Zusammenspiel einer Reihe von Faktoren zurückzuführen ist, darunter die Dicke des Graphens, die Wechselwirkungen zwischen Ionen und der umgebenden Flüssigkeit und die Wechselwirkungen zwischen Ionen und Poren, die schwächer werden, wenn die Poren leicht gestreckt werden. Es gibt ein sehr empfindliches Gleichgewicht zwischen Ionen und ihrer Umgebung, sagte Smolyanitsky.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Sensortechnik
Die Sensortechnik hat die chemische Industrie revolutioniert, indem sie präzise, zeitnahe und zuverlässige Datenbereitstellung in einer Vielzahl von Prozessen ermöglicht. Vom Überwachen kritischer Parameter in Produktionslinien bis hin zur Früherkennung potenzieller Störungen oder Gefahren – Sensoren sind die stillen Wächter, die Qualität, Effizienz und Sicherheit gewährleisten.
Themenwelt Sensortechnik
Die Sensortechnik hat die chemische Industrie revolutioniert, indem sie präzise, zeitnahe und zuverlässige Datenbereitstellung in einer Vielzahl von Prozessen ermöglicht. Vom Überwachen kritischer Parameter in Produktionslinien bis hin zur Früherkennung potenzieller Störungen oder Gefahren – Sensoren sind die stillen Wächter, die Qualität, Effizienz und Sicherheit gewährleisten.