Forscher werfen erstmals einen Blick ins Auge von Majoranas
University of Basel, Department of Physics
Vor rund 75 Jahren vermutete der italienische Physiker Ettore Majorana die Existenz von exotischen Teilchen, die gleich ihrem eigenen Antiteilchen sind. Das Interesse an diesen Teilchen, Majorana-Fermionen genannt, ist seither enorm gestiegen, da sie bei der Realisierung eines Quantencomputers eine Rolle spielen könnten. Theoretisch sind die Majoranas bereits recht gut beschrieben. Ihr experimenteller Nachweis und ihre Untersuchung gestalten sich jedoch schwierig, da sie immer in Paaren vorkommen müssen, aber dann meistens zu einem normalen Elektron vereint sind. Es braucht daher sehr ausgeklügelte Kombinationen und Anordnungen von verschiedenen Materialien, um zwei Majoranas zu erzeugen und auf Abstand zu halten.
Zusammenarbeit von Theorie und Praxis
Basierend auf Vorhersagen und Berechnungen der theoretischen Physiker Prof. Jelena Klinovaja und Prof. Daniel Loss hat nun die Gruppe um Prof. Ernst Meyer (alle Swiss Nanoscience Institute und Departement Physik der Universität Basel) Zustände experimentell gemessen, die Majoranas entsprechen. Die Forscher haben dazu auf einem Supraleiter aus Blei einzelne Eisenatome mit Spin aufgedampft, die sich aufgrund der reihenförmigen Struktur der Bleiatome zu einem winzigen Draht bestehend aus einer Reihe einzelner Atome anordnen. Die Drähte erreichten dabei eine erstaunliche Länge von bis zu 70 Nanometern.
Einzelne Majoranas an den Enden
Die Forscher untersuchten diese mono-atomaren Nanodrähte mithilfe von Rastertunnelmikroskopie und erstmals auch mit einem Rasterkraftmikroskop. Anhand der Aufnahmen und Messungen fanden sie unter bestimmten Bedingungen und ab einer bestimmten Drahtlänge an den Enden der Drähte klare Hinweise auf das Vorhandensein von einzelnen Majorana-Fermionen.
Die beiden Majoranas an den Drahtenden sind dabei trotz ihrer räumlichen Trennung miteinander verbunden. Dadurch bilden sie gemeinsam einen neuen über den ganzen Draht ausgedehnten Zustand, der entweder durch ein Elektron besetzt («1») oder nicht besetzt («0») sein kann. Diese binäre Eigenschaft kann dann als Basis für ein Quanten-Bit (Qubit) dienen und macht die Majoranas, die zudem sehr robust gegen etliche Umwelteinflüsse sind, zu vielversprechenden Kandidaten für die Realisierung eines zukünftigen Quantencomputers.
Vorhergesagte Wellenfunktion gemessen
Die Basler Forscher haben nicht nur gezeigt, dass sich an den Enden des Eisendrahtes einzelne Majoranas erzeugen und messen lassen. Wie die Kolleginnen und Kollegen aus der Theorie bereits berechnet hatten, konnten sie nun erstmals auch experimentell belegen, dass die Majoranas eine Ausdehnung mit innerer Struktur aufweisen. Über einen Bereich von einigen Nanometern zeigten sie in den Messungen die erwartete Wellenfunktion mit charakteristischen Oszillationen und zweifachen Zerfallslängen, die nun zum ersten Mal deutlich sichtbar gemacht wurden.
Originalveröffentlichung
Meistgelesene News
Originalveröffentlichung
Rémy Pawlak, Marcin Kisiel, Jelena Klinovaja, Tobias Meier, Shigeki Kawai, Thilo Glatzel, Daniel Loss, and Ernst Meyer; "Probing atomic structure and Majorana wavefunctions in mono-atomic Fe chains on superconducting Pb surface"; npj Quantum Information; 2016
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.