Intelligentes Haftmaterial mit Licht fernsteuern

Neues Material nach biologischem Vorbild transportiert Mikroobjekte

26.01.2017 - Deutschland

Haftmechanismen aus der Natur, wie Geckos und andere Tiere sie nutzen, wenn sie kopfüber an der Decke laufen, haben viele Vorteile: So sind sie beständig haftstark und das ohne Klebstoff oder Rückstände. Wie diese Mechanismen künstlich nachgebaut werden können, erforschen Wissenschaftler an der Christian-Albrechts-Universität zu Kiel (CAU). Einem interdisziplinären Forschungsteam aus der Materialwissenschaft, Chemie und Biologie ist es jetzt gelungen, ein bioinspiriertes Haftmaterial zu entwickeln, das über UV-Licht ferngesteuert werden kann. So ist es möglich, Objekte präzise im Mikrobereich zu transportieren. Die Erkenntnisse könnten interessant sein für Anwendungen in der Robotik, Industrie und Medizintechnik.

Foto/Copyright: Emre Kizilkan

Angestrahlt mit UV-Licht biegt sich das intelligente Haftmaterial. So kann es flache und dreidimensionale Objekte (hier eine Glaskugel mit einem Durchmesser von einem Millimeter) anheben, transportieren und wieder absetzen.

Grafik/Copyright: Emre Kizilkan und Jan Strüben

Das neue Kompositmaterial besteht aus zwei Stoffen: Einem klebenden Material (blau) und einem elastischen Kunststoff LCE (Liquid crystal elastomer) (gelb). LCE ist aus Azobenzolmolekülen aufgebaut, die sich – und damit das ganze Material – biegen, sobald sie mit UV-Licht bestrahlt werden. Durch das Biegen lösen sich die Haftelemente wieder vom Objekt.

Foto/Copyright: Emre Kizilkan

Das zweite, klebende, Material ist ein Polymer, das nach Vorbildern aus der Natur entwickelt wurde. Seine Oberfläche besteht aus einer pilzkopfförmigen Mikrostruktur, die unter dem Rasterelektronenmikroskop sichtbar wird. Sie ist starkklebenden, reversiblen Haftelementen nachempfunden, wie sie bei einigen Käferarten zu finden sind.

Foto/Copyright: Emre Kizilkan
Grafik/Copyright: Emre Kizilkan und Jan Strüben
Foto/Copyright: Emre Kizilkan

In der Natur sorgen mechanische Stimuli wie Muskelbewegungen dafür, dass Tierbeine sich an Oberflächen anhaften und wieder lösen. Die Kieler Wissenschaftler nutzen stattdessen Licht, um ihre künstlichen Haftmechanismus zu kontrollieren, die sie nach Vorbildern aus der Natur gebaut haben. „Licht hat den Vorteil, dass es sich sehr präzise einsetzen lässt. Es ist reversibel, kann also an- und ausgeschaltet werden und das in kürzester Zeit“, erläutert Emre Kizilkan aus der Arbeitsgruppe Funktionelle Morphologie und Biomechanik um Professor Stanislav Gorb vom Zoologischen Institut.

Die Wissenschaftler entwickelten zunächst ein elastisches, poröses Material (LCE, Liquid crystal elastomer), das sich aufgrund seiner speziellen Molekülstruktur biegt, sobald er mit UV-Licht bestrahlt wird. Dabei fiel ihnen auf: Je poröser das Material, desto mehr biegt es sich. Das machten sich die Forschenden zu nutze. „Poröse Materialen lassen sich aufgrund ihrer Struktur sehr leicht mit anderen verbinden“, erklärt Kizilkan. „Also testeten wir, was passiert, wenn wir das elastische Material, das sehr gut auf Licht reagiert, mit einem bioinspirierten Material kombinieren, das sehr gut klebt.“

Das Ergebnis ist ein intelligentes, haftendes Kompositmaterial, das über Licht kontrolliert werden kann. Die Oberfläche besteht aus einer Mikrostruktur aus pilzkopfförmigen Haftelementen, wie sie sich auch an den Füßen einiger Käferarten befindet. Flache oder dreidimensionale Elemente wie kleine Objektträger oder Kugeln aus Glas haften daran an und können damit angehoben werden. Wird das Kompositmaterial mit UV-Licht bestrahlt, biegt es sich. Durch das Krümmen der Oberfläche lösen sich mehr und mehr Haftelemente vom Objekt bis es schließlich wieder abgesetzt werden kann.

„Wir konnten zeigen, dass wir mit unserem neuen Material in der Lage sind, Objekte zu transportieren. Außerdem lässt sich der Transport mit Licht sehr präzise steuern und zwar auf Mikroebene“, erklärt Kizilkan. Gorb ergänzt: „Wir nutzen das Licht quasi als Fernsteuerung. Außerdem hinterlässt unser bioinspiriertes Klebematerial keine Rückstände auf den Objekten.“ Die Entdeckung der Forschungsgruppe ist deshalb besonders interessant für den Bau von empfindlichen Sensoren oder winzig kleinen Computerchips. Sie müssen geschützt vor äußeren Einflüssen und Verunreinigungen hergestellt werden, wie zum Beispiel im Reinraum der CAU. „Langfristig würden wir das neue Material gerne nutzen, um Mikroroboter zu entwickeln, die sich durch Licht gesteuert fortbewegen und an Wänden hochklettern können“, gibt Professor Gorb einen Ausblick.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...