Ein "Rezeptbuch", das Farbzentren in Siliziumkarbidkristallen erzeugt
Unterschiedliche Temperatur- und Protonendosierungen für die Herstellung von Defekten
Maximilian Rühl
Nun hat eine Forschergruppe eine Liste von "Rezepten" erstellt, mit denen Physiker bestimmte Arten von Defekten mit gewünschten optischen Eigenschaften in SiC erzeugen können. In einem der ersten Versuche, Farbzentren systematisch zu erforschen, verwendete die Gruppe Protonenbestrahlungstechniken, um die Farbzentren in Siliziumkarbid herzustellen. Sie passten Protonendosis und Temperatur an, um die richtigen Bedingungen zu finden, die zuverlässig die gewünschte Art von Farbzentrum erzeugen.
Atomdefekte im Gitter von SiC-Kristallen erzeugen Farbzentren, die Photonen mit einzigartigen spektralen Signaturen emittieren können. Während einige Materialien, die für die Quanteninformatik in Frage kommen, tiefkalte Temperaturen erfordern, können Farbzentren in SiC bei Raumtemperatur emittieren. Da der Vorstoß zur Entwicklung immer kleinerer Bauelemente in Richtung atomarer Sensoren und Ein-Photonen-Emitter weitergeht, macht die Fähigkeit, die Vorteile der bestehenden SiC-Technologie für integrierte Schaltungen zu nutzen, das Material zu einem herausragenden Kandidaten.
Um die Defekte zu erzeugen, bombardierten Michael Krieger und seine Kollegen SiC-Proben mit Protonen. Das Team ließ das SiC dann eine Erwärmungsphase durchlaufen, die als Glühen bezeichnet wird. "Wir richten großen Schaden an diesen Kristallen an", sagte Krieger. "Beim Glühen erholt sich jedoch die Kristallstruktur, aber es entstehen auch Defekte - einige von ihnen sind die gewünschten Farbzentren."
Um sicherzustellen, dass ihre Rezepturen mit der üblichen Halbleitertechnologie kompatibel sind, entschied sich die Gruppe für die Protonenbestrahlung. Außerdem benötigt dieser Ansatz keine Elektronenbeschleuniger oder Kernreaktoren wie andere Techniken zur Erzeugung von Farbzentren.
Die Daten aus der Verwendung verschiedener Dosen und Glühtemperaturen zeigten, dass die Produktion von Fehlern in SiC einem Muster folgt. Zunächst erzeugen Protonen überwiegend Siliziumleerstellen im Kristall, dann wandeln sich diese Leerstellen sequentiell in andere Defektkomplexe um.
Die Untersuchung der Niedertemperatur-Photolumineszenzspektren der Defekte veranlasste das Team, drei bisher nicht berichtete Signaturen zu entdecken. Es wurde gezeigt, dass die drei temperaturstabilen (TS) Linien mit der Protonendosis und der Glühtemperatur korrelieren.
Krieger sagte, dass diese TS-Linien spannende Eigenschaften haben und weitere Forschungen laufen bereits, da die Gruppe hofft, diese Defekte für den Einsatz in SiC-basierten Quantentechnologie-Bauteilen zu nutzen und zu kontrollieren.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Sensortechnik
Die Sensortechnik hat die chemische Industrie revolutioniert, indem sie präzise, zeitnahe und zuverlässige Datenbereitstellung in einer Vielzahl von Prozessen ermöglicht. Vom Überwachen kritischer Parameter in Produktionslinien bis hin zur Früherkennung potenzieller Störungen oder Gefahren – Sensoren sind die stillen Wächter, die Qualität, Effizienz und Sicherheit gewährleisten.
Themenwelt Sensortechnik
Die Sensortechnik hat die chemische Industrie revolutioniert, indem sie präzise, zeitnahe und zuverlässige Datenbereitstellung in einer Vielzahl von Prozessen ermöglicht. Vom Überwachen kritischer Parameter in Produktionslinien bis hin zur Früherkennung potenzieller Störungen oder Gefahren – Sensoren sind die stillen Wächter, die Qualität, Effizienz und Sicherheit gewährleisten.