Mit Bierhefe wertvolle Fettsäuren brauen
Eckhard Boles und Martin Grininger
Wie die Wissenschaftler mitteilen, sind die kurzkettigen Fettsäuren auch als Vorstufe von Treibstoffen begehrt. „Die neue Technologie kann ein Schlüsselschritt sein, um über Hefen einen alternativen Zugang zu neuartigen Biokraftstoffen zu finden, deren Eigenschaften denen fossiler Kraftstoffe nahezu entsprechen“, erklärt Eckhard Boles vom Institut für Molekulare Biowissenschaften.
Die von Pflanzen und Tieren produzierten Fettsäuren bestehen zu einem großen Anteil aus Ketten von 18 Kohlenstoffatomen. Sie sind also länger als die gewünschten kurzkettigen Verbindungen. In lebenden Zellen stellen große Proteinkomplexe, die Fettsäuresynthasen, Fettsäuren her. Dabei fügen sie 9 Bausteine aus jeweils 2 Kohlenstoffatomen in einem Prozess aus 8 Zyklen zusammen. Martin Grininger, Lichtenberg-Professor der VolkswagenStiftung an der Goethe-Universität und Forschungsgruppenleiter am Buchmann Institut für Molekulare Lebenswissenschaften (BMLS), war mitbeteiligt an der Aufklärung der dreidimensionalen Struktur der Fettsäuresynthasen. Mit seinem detaillierten Wissen über deren Wirkmechanismus konnte er gezielt in diesen eingreifen.
„Wir haben zunächst untersucht, wie die Fettsäuresynthase Zyklen zählt, um zu entscheiden, wann die Kette fertig ist. Gefunden haben wir eine Art Lineal, das die Länge der Fettsäure misst“, erklärt Martin Grininger. „Dieses Lineal haben wir so verändert, dass die Fettsäuresynthase sich vermisst und kürzere Ketten frei setzt. Das alles geschah zunächst am Computer und im Reagenzglas“.
Mit Eckhard Boles, der im benachbarten Biozentrum am Stoffwechsel von Hefen forscht, entstand dann die Idee, Griningers veränderte Fettsäuresynthasen in Hefen einzusetzen. „Diese Hefen schieden auf einmal die kurzkettigen Fettsäuren in beachtlichen Mengen aus“, berichtet Boles. „Damit können wir nun wie beim Bierbrauen anstelle von Alkohol die wertvollen kurzkettigen Fettsäuren produzieren.“ Grininger und Boles ergänzen: „Diese Entwicklung ist erst der Anfang. Wir wollen jetzt durch ähnliche Veränderungen an anderen großen Enzymkomplexen, den Polyketidsynthasen, weitere neuartige Moleküle für die chemische und pharmazeutische Industrie synthetisieren, die sonst nur schwer zugänglich sind.“
Die Universität Frankfurt hat die Entwicklungen durch zwei europäische und internationale Patentanmeldungen schützen lassen und sucht nun nach Lizenznehmern für kommerzielle Anwendungen. Grininger und Boles entwickeln ihre Technologie zusammen in verschiedene Richtungen weiter. In dem von der Europäischen Union geförderten Projekt „Chassy“ soll die Technologie zur Industriereife gebracht werden. Zudem sollen in dem vom Land Hessen finanzierten LOEWE-Projekt „MegaSyn“ über die Veränderung von Polyketidsynthasen weitere chemische Verbindungen hergestellt werden. Und in dem vom Bundesministerium für Ernährung und Landwirtschaft geförderten Projekt „Alk2Bio“ werden die Hefen so weiterentwickelt, dass sie aus den kurzkettigen Fettsäuren die Biokraftstoffe Oktanol und Heptan produzieren.
Originalveröffentlichung
Jan Gajewski, Floris Buelens, Sascha Serdjukow, Melanie Janßen, Niña Cortina, Helmut Grubmüller & Martin Grininger; "Engineering fatty acid synthases for directed polyketide production"; Nature Chemical Biology; 2017
Jan Gajewski, Renata Pavlovic, Manuel Fischer, Eckhard Boles & Martin Grininger; "Engineering fungal de novo fatty acid synthesis for short chain fatty acid production"; Nature Comm.; 2017
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Synthese
Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.
Themenwelt Synthese
Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.