Ein Rätsel des Magnetismus mit moderner Technik gelöst
Grafik-Elemente: Steffen Eich/TU Kaiserslautern
Schaut man sich die Elektronen im Metall Kobalt an, stellt man fest, dass diese nach einem bestimmten Schema angeordnet sind. In dem magnetischen Material, das in der Physik als ferromagnetisch bezeichnet wird, hat der Großteil der darin enthaltenen Elektronen einen Spin, also einen Eigendrehimpuls, der nach unten weist (Majoritätselektronen). Die restlichen Elektronen zeigen eine Spinausrichtung nach oben (Minoritätselektronen). Dieses Ungleichgewicht in der Anzahl der Majoritäts- und Minoritätselektronen führt zu einer spontanen Magnetisierung des Materials. Führt man diesem System nun Energie z.B. durch Erwärmen zu, brechen einige Majoritätselektronen aus dieser Ordnung aus, die Richtung ihres Eigendrehimpulses ändert sich. Diese Änderung der Spinausrichtung führt nun dazu, dass sich das Ungleichgewicht zwischen den Elektronen mit Spin nach oben und den Elektronen mit Spin nach unten verringert. Dies hat wiederum zur Folge, dass die Magnetisierung des Materials abnimmt. Es kommt also zu einem Phasenübergang vom geordneten ferromagnetischen in den ungeordneten paramagnetischen Zustand. Genau diese Änderung steht im Fokus der Forschung des internationalen Physiker-Teams.
Bisher gab es zwei verschiedene Theorien zu den Gründen für den Übergang von einem ferromagnetischen in einen paramagnetischen Zustand: Eine Theorie geht davon aus, dass die Wechselwirkung zwischen den Elektronen, die dafür sorgt, dass ihre Spins in dieselbe Richtung weisen, spontan verschwindet und deshalb auch ihre Spins nicht mehr gleich ausgerichtet sind. Die andere Theorie besagt, dass die Elektronen auf einmal so stark in Bewegung geraten, dass ihre Eigendrehimpulse plötzlich in unterschiedliche Richtungen gehen.
Die Physiker konnten erstmals nachweisen, dass die zweite Theorie, das sogenannte Heisenberg-Bild, die Erklärung für den Phasenübergang liefert. Mit einem Laser regten sie die Elektronen in einer dünnen Schicht Kobalt zu einem Phasenübergang an, der innerhalb weniger Femtosekunden geschieht. In einer Femtosekunde legt Licht gerade ein Tausendstel der Dicke eines Haares zurück.
Dank modernster Messtechnik konnte das Wissenschaftler-Team genau nachvollziehen, was in dieser äußerst kurzen Zeitspanne passiert. „Unsere Forschung hat dank einer neuen Messtechnik zahlreiche neue Rückschlüsse auf ultraschnelle magnetische Prozesse geliefert. Die Ergebnisse erweitern unser Verständnis über die mikroskopischen Prozesse, die während dieser Phasenübergänge stattfinden“, sagt. Prof. Mirko Cinchetti von der TU Dortmund.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für die chemische Industrie, Analytik, Labor und Prozess bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.