Erstmals gemessen: Quantenfeldtheorie im Quanten-Simulator
Neue Art der Vermessung von Vielteilchen-Quantensystemen
Copyright: TU Wien
Manchmal sind solche Theorien aber nur sehr schwer experimentell zu überprüfen. Am Vienna Center for Quantum Science and Technology (VCQ) an der TU Wien konnte nun gezeigt werden, wie man Quantenfeldtheorien in Experimenten gezielt testen kann. Dazu stellten die Forscher ein Quantensystem aus tausenden ultrakalten Atomen her, die festgehalten in einer magnetischen Falle auf einem AtomChip, zu einem „Quanten- Simulator“ werden. Dieser kann Auskunft über ganz andere physikalische Systeme liefern und so dabei helfen, grundlegende Fragen der Physik zu beantworten.
Komplexe Quantensysteme, die sich nicht zerlegen lassen
„Ultrakalte Atome bieten nun einen natürlichen Zugang, grundlegende physikalische Quanten-Prozesse im Labor nachzubauen und zu untersuchen“, erklärt Prof. Jörg Schmiedmayer vom Atominstitut der TU Wien. Charakteristisch für ein solches System aus mehreren tausend Bestandteilen ist, dass man seine Einzelteile nicht getrennt voneinander untersuchen kann.
Bei klassischen Systemen, wie wir sie aus unserem Alltag kennen, ist das ganz anders: Die Bahnen der Kugeln auf einem Billardtisch kann man getrennt voneinander analysieren – nur wenn die Kugeln aneinanderstoßen, wirken sie aufeinander ein.
„In einem hochkorrelierten Quantensystem aus mehreren tausenden Teilchen wie dem unseren ist die Komplexität so hoch, dass es mathematisch nicht möglich ist, die Bestandteile getrennt voneinander sinnvoll zu beschreiben“, erklärt Thomas Schweigler, der Erstautor der Publikation. „Stattdessen beschreibt man das System mithilfe kollektiver Prozesse an denen eine Vielzahl von Teilchen beteiligt ist, ähnlich wie Wellen in Flüssigkeiten, die ja auch aus unzähligen Molekülen bestehen.“ Diese kollektiven Prozesse wurden nun mithilfe neuer Methoden aufs Genaueste untersucht.
Höhere Korrelationen
Wenn man mit hoher Präzision misst, an welchen Positionen sich die einzelnen Atome befinden, stellt man fest: Nicht an jedem Punkt ist die Wahrscheinlichkeit, ein Atom zu finden, gleich groß. Und diese Wahrscheinlichkeiten an unterschiedlichen Orten stehen miteinander in Verbindung. „Wenn ich in einem gewöhnlichen Gas an zwei bestimmten Punkten jeweils ein Teilchen messe, ändert das nichts an der Wahrscheinlichkeit dafür, an einem anderen Punkt ein drittes Teilchen zu messen“, sagt Jörg Schmiedmayer. „Doch in der Quantenphysik hängen Messungen an unterschiedlichen Orten auf ganz subtile Weise zusammen. Damit geben sie Auskunft über die grundlegenden Naturgesetze, die das Verhalten der atomaren Wolke auf dem Level der Quanten bestimmen“
„Die sogenannten Korrelationsfunktionen, mit denen man diese Zusammenhänge mathematisch beschreibt, gelten in der theoretischen Physik als äußerst wichtiges Instrument zur Charakterisierung von Quantensystemen“, betont Prof. Jürgen Berges vom Institut für Theoretische Physik der Universität Heidelberg. Doch während sie in der theoretischen Forschung schon bisher stets eine entscheidende Rolle spielten, waren sie im Experiment bisher kaum zugänglich. Mit Hilfe der an der TU Wien entwickelten Methoden ändert sich das nun. „Wir können uns Korrelationen unterschiedlicher Ordnung ansehen – bis hin zur zehnten Ordnung. Dabei werden die Zusammenhänge zwischen den Ergebnissen von gleichzeitigen Messungen an zehn verschiedenen Punkten im Raum bestimmt“, erklärt Schmiedmayer. „Für die Beschreibung des Quantensystems ist es ganz wichtig, ob die höheren Korrelationen durch die Korrelationen niedriger Ordnung dargestellt werden können – dann kann man sie irgendwann vernachlässigen, oder ob sie neue Information enthalten, und man das System vielleicht mit klassischen Computern niemals vollständig beschreiben kann.“
Quanten-Simulatoren
Anhand solcher hochkorrelierter Systeme wie der Atomwolke in der magnetischen Falle kann man nun verschiedene Theorien testen und die Natur der Quantenkorrelationen besser verstehen. Diese Quantenkorrelationen spielen für scheinbar ganz unterschiedliche physikalische Fragen eine entscheidende Rolle – etwa für die merkwürdigen Eigenschaften des jungen Universums direkt nach dem Urknall, aber auch für spezielle neue Materialien wie etwa die sogenannten topologischen Isolatoren.
Über verschiedenste physikalische Systeme kann man wichtige Erkenntnisse gewinnen, indem man analoge Bedingungen mit Hilfe der Atomwolken nachstellt und sie dann untersucht. Das ist die Grundidee eines „Quanten-Simulators“: Ähnlich wie eine Computer-Simulation Ergebnisse liefert, aus denen man etwas über die reale Welt lernt, können Messungen an Quanten-Simulatoren Ergebnisse über ein ganz anderes Quantensystem liefern, das nicht direkt im Labor untersucht werden kann.