Kühl kalkuliert: Metallische Substrate für die zukünftige Halbleiter-Technologie und Green IT
Copyright: Forschungszentrum Jülich / Martin Mikulics
Copyright: Forschungszentrum Jülich / Martin Mikulics
Die immer weiter fortschreitende Miniaturisierung von Halbleiterbauteilen macht unsere Computer und Handys kleiner und leistungsfähiger, doch sie hat einen Preis. Da immer mehr einzelne Bauelemente auf kleinstem Raum integriert werden, steigt auch die Packungsdichte. Das macht es schwieriger, die Wärme abzuleiten, die durch den Stromfluss entsteht. Diese Wärmeentwicklung wirkt sich nicht nur nachteilig auf die Funktion der Bauteile aus, sondern auch auf ihre Lebensdauer. Effiziente Wärmeableitung ist daher essenziell für die weitere Entwicklung von Schaltkreisen, insbesondere wenn es um hohe Rechengeschwindigkeiten und -leistungen geht. Daher sind neue Konzepte gefragt – wie etwa metallische Trägermaterialien für Halbleiterbauelemente.
"Metalle sind sehr gute Wärmeleiter", erklärt Hilde Hardtdegen vom Jülicher Peter Grünberg Institut. "Doch bisher kamen sie als Trägermaterialien nicht in Frage. Unterschiedliche chemische und physikalische Eigenschaften und vor allem Unterschiede im Kristallgitter machten ein Aufbringen von monokristallinen Halbleiterschichten auf metallische Substrate mit konventionellen Methoden unmöglich."
Die effektive Wärmeableitung ist der Schlüssel
Jülicher Wissenschaftlern ist dies nun erstmals gelungen, gemeinsam mit Kollegen aus der Slowakei, Tschechien und Australien. "Entscheidend dabei war, dass wir die für den Abscheideprozess notwendige Temperatur gesenkt haben", erklärt Hardtdegen. "Insbesondere mussten wir ein kontrolliertes Aufheizen und Abkühlen der Proben gewährleisten. So konnten wir verhindern, dass sich an der Grenzschicht zwischen dem metallischen Trägermaterial und der Halbleiterschicht mechanische Spannungen aufbauen."
Wie viel besser leiten nun metallische Trägermaterialien die Wärme ab? Das hängt vom Temperaturbereich ab, erklärt Hardtdegen. "Hochleistungs-Transistoren erhitzen sich während des Betriebs von Raumtemperatur auf bis zu mehreren hundert Grad Celsius. In diesem Bereich zeigen die von uns verwendeten Silber-Trägermaterialien eine mehr als achtfach höhere Wärmeleitfähigkeit als die konventionellen Saphir-Substrate. Im Endeffekt reduziert das die Aufheizung der Halbleiterstrukturen um bis zu 70 Prozent."
Von Flugzeugen bis zu Handys
Die möglichen Anwendungen für ein solches metallisches Trägermaterial sind vielfältig: Hochleistungselektronik für mobile Funknetze, Bauteile für die Automobil- und Flugzeugindustrie, selbst alltägliche Geräte wie Handys oder Tablets – eben überall dort, wo sich Wärmeentwicklung nachteilig auf die Funktion von Geräten auswirken kann.
Doch noch ist das Zukunftsmusik. "Die im Labor optimierten Prozesse müssten selbstverständlich an die Anforderungen der Massenproduktion angepasst werden, und ebenso an die jeweiligen technischen Spezifikationen für diverse Endprodukte", so Hardtdegen. "Vor allem Stabilität und Wiederholbarkeit müssen noch gezielt optimiert werden." Die optimistischste Einschätzung der Wissenschaftler für eine tatsächliche Anwendung ihrer Entwicklung liegt bei fünf bis sieben Jahren.