Wie man Stickstoff zwingt, sich zu binden
Eine Umlagerung ermöglicht den Zugang zu neuen Strukturen
Copyright: Nuno Maulide
Copyright: Nuno Maulide
Gasförmiger Distickstoff (N2) ist einerseits essentiell für viele biologische Prozesse, andererseits sind chemische Verbindungen, in denen Stickstoff an Kohlenstoff gebunden ist, in unserem Leben allgegenwärtig. Von spezieller Bedeutung sind Amine, bei denen eine Bindung zwischen einem Stickstoffatom und einem Kohlenstoffatom besteht. Unter diesen nehmen aromatische Amine eine Sonderstellung ein: Diese Klasse von "Aromaten" wird auch als Aniline bezeichnet. Aromaten zeichnen sich, anders als ihr Name es suggeriert, nicht durch aromatischen Geruch, sondern durch besondere chemische Stabilität aus. Aromatische Amine sind dabei besonders für die industrielle Synthese essenziell. Die Wichtigkeit von Anilin spiegelt sich beispielsweise im Namen des Chemieunternehmens BASF wider: "Badische Anilin- und Soda-Fabrik".
"Anilin ist auch heute noch ein integraler Bestandteil vieler Materialien, zum Beispiel von Polyurethanschaum, welcher etwa in den Isolatoren in Kühl- und Gefrierschränken verwendet wird", so der portugiesische Chemiker Nuno Maulide. Aniline sind auch bekannte Vorstufen für Farbstoffe, und spezielle Anilinderivate zählen zu den potentesten und erfolgreichsten pharmazeutischen Produkten.
Stickstoff-Kohlenstoff – Aller Anfang ist schwer
Die Herstellung von Anilinen beschäftigt Chemiker schon seit langer Zeit. "Wenn wir es schaffen, Aniline mit unterschiedlichen Substituenten und unterschiedlichen Strukturen herzustellen, können wir die Eigenschaften verschiedener Materialien und Stoffe verändern“, erklärt Saad Shaaban, Erstautor der Studie. "Das ist aber nicht leicht – besonders dann, wenn der Kohlenstoff, an den wir einen Stickstoff knüpfen wollen, von großen Substituenten umgeben ist", ergänzt er. In diesen Fällen spricht man von "sterischer Hinderung": "Wie in einer voll besetzten Straßenbahn: Es ist schwierig, zu einem freien Sitzplatz hinzukommen, wenn rundherum alle anderen belegt sind. Genauso blockieren auch Atome und Moleküle bestimmte Stellen und erschweren so den Zugang“, vergleicht Maulide.
Mit einer neuen Methode haben es die Chemiker der Universität Wien geschafft, durch eine Umlagerung den Stickstoff quasi zu zwingen, sich mit dem Kohlenstoff eines Aromaten zu verknüpfen. "Wir haben eine Situation geschaffen, in der es für das Molekül keine andere Möglichkeit gibt, als das zu tun, was wir wollen", sagt Veronica Tona, Co-Autorin der Studie. Die neu entwickelte Methode macht die Synthese dieser aromatischen Amine relativ einfach. "So können wir hoffentlich unsere Methode auch in der Synthese weiterer komplexer aromatischer Amine anwenden, um deren biologische Aktivität zu evaluieren", so Maulide abschließend.