Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

26.07.2017 - Deutschland

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich. Materialwissenschaftler und Physiker der Universität Heidelberg und der University of St Andrews (Schottland) nutzten leuchtende und besonders stabile Transistoren, um eine starke Licht-Materie-Kopplung zu erreichen und damit Exziton-Polaritonen zu erzeugen. Diese Teilchen bilden eine wichtige Grundlage für die Realisierung neuer Lichtquellen, sogenannter elektrisch gepumpter Polariton-Laser, die mit Kohlenstoff-Nanoröhrchen hergestellt werden könnten. Die aktuellen Erkenntnisse sind Ergebnis einer Forschungszusammenarbeit von Prof. Dr. Jana Zaumseil (Heidelberg) und Prof. Dr. Malte C. Gather (St Andrews).

Erstellt von Ko-Autor Dr. Yuriy Zakharko

Schematische Darstellung eines leuchtenden Transistors mit Kohlenstoff-Nanoröhrchen zwischen zwei Spiegeln zur elektrischen Anregung von Polaritonen.

Die Forschung an organischen, kohlenstoff-basierten Halbleitern für optoelektronische Bauelemente hat in den vergangenen Jahren zu verschiedenen Anwendungen geführt. Dazu gehören zum Beispiel Leuchtdioden für energiesparende und hochauflösende Bildschirme, die in Smartphones und Fernsehern eingesetzt werden. Trotz der rasanten Entwicklung ist es bisher jedoch nicht gelungen, elektrisch gepumpte Laser aus organischen Materialien herzustellen. Um der Realisierung näher zu kommen, arbeiten die Wissenschaftler in Heidelberg und St Andrews an der Kopplung von Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen – mikroskopisch kleinen, röhrenförmigen Gebilden aus Kohlenstoff.

Werden Photonen (Licht) und Exzitonen (Materie) dazu gebracht, ausreichend schnell Energie auszutauschen, erzeugen sie neue Quasiteilchen, sogenannte Exziton-Polaritonen, die auch Licht abgeben. Unter bestimmten Bedingungen kann diese Emission die Eigenschaften von Laserlicht annehmen. Seit Kurzem werden diese Exziton-Polaritonen als neuer und effizienter Weg zu einer laserartigen Lichtemission in organischen Materialien intensiv untersucht, wie Jana Zaumseil betont.

Die Wissenschaftler um Prof. Zaumseil und Prof. Gather haben mit früheren Arbeiten bereits gezeigt, dass Exziton-Polaritonen in halbleitenden Kohlenstoff-Nanoröhrchen gebildet werden können. Um die Bildung der licht-emittierenden Quasiteilchen anzuregen, wurde jedoch ein externer Laser eingesetzt. Mit ihren aktuellen Untersuchungen konnten die Forscher nun zeigen, dass diese Teilchen auch durch elektrische Anregung, das heißt mittels Strom, gebildet werden können. Dazu entwickelten sie einen leuchtenden Transistor mit einer dichten Schicht von halbleitenden Kohlenstoff-Nanoröhrchen, der zwischen zwei Spiegeln aus Metall eingebettet wurde.

Aufgrund der hohen Stabilität und Leitfähigkeit der Kohlenstoff-Nanoröhrchen konnten in diesen leuchtenden Transistoren extrem hohe Ströme und somit Polaritondichten erreicht werden, wobei diese Polaritondichten einige Größenordnungen über allen bisher gezeigten Werten liegen. Berechnungen des Doktoranden Arko Graf – einer der beiden Erstautoren der Studie – zeigen, dass die Realisierung eines elektrisch gepumpten Lasers so in realistische Reichweite rückt. Dabei kann das auf diese Weise erzeugte Licht über einen großen Bereich des nahen Infrarot variiert werden, was insbesondere für Anwendungen in der Telekommunikation von Interesse ist.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Mikroskopie-Zubehör

Mikroskopie-Zubehör von AHF analysentechnik

Optimieren Sie Ihre Fluoreszenz-Mikroskopie mit Premium-Zubehör

Entdecken Sie optische Filter und LED-Lichtquellen der nächsten Generation

Mikroskopie-Zubehör
Ionendetektoren für Massenspektroskopie

Ionendetektoren für Massenspektroskopie von Hamamatsu Photonics

Innovative Detektorlösungen für die Massenspektrometrie

Einzigartige Geräte für die nächste Generation der Massenspektralanalyse

Ionendetektoren
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...