Erstmals Reaktionen zwischen zwei Molekülen in Nanoreaktoren modelliert
HZB
In biologischen Organismen übernehmen oft Proteine oder Enzyme die Rolle von Nanoreaktoren. Doch im Labor lassen sich auch künstliche Nanoreaktoren herstellen. Eine wichtige Klasse dieser Nanoreaktoren ist wie ein Ei aufgebaut: ein katalytisch aktives metallisches Nanopartikel sitzt wie das Eigelb im Zentrum, umhüllt von einer Schale aus vernetzten Polymermolekülen. Solche Nanoreaktoren schaffen eine einzigartige Umgebung für die gewünschten Reaktionen.
Leistungsstarke Modellierung
“Wir haben erstmals mathematisch beschrieben, wie zwei Moleküle in solchen Nanoreaktoren transportiert werden, um miteinander zu reagieren. Dabei konnten wir auch erkennen, welche Faktoren die Reaktionsrate dabei am stärkten beeinflussen“, sagt Dr. Rafael Roa, der Erstautor der Studie und Postdoc in der Gruppe um Prof. Dr. Joe Dzubiella am HZB-Institut für Weiche Materie und Funktionale Materialien.
Es kommt vor allem auf die Schale an
Eine überraschende Einsicht war, dass die Durchlässigkeit der Schalen noch viel wichtiger ist, als bislang vermutet. Denn aus dem Modell ergibt sich ganz klar: über die Reaktionsrate entscheidet nicht die Konzentration der Ausgangstoffe in der Lösung, sondern vor allem, wie gut diese ganz individuell durch die Schale ins Innere des Nanoreaktors diffundieren. „Dies ist ein sehr interessantes Ergebnis, denn inzwischen lässt sich bei vielen künstlichen Nanoreaktoren die Durchlässigkeit hervorragend kontrollieren, sogar Schalten, zum Beispiel durch Veränderungen der Temperatur oder anderer Parameter“, betont Dr. Won Kyu Kim, Ko-Autor und ebenfalls Postdoc in der Gruppe um Dzubiella.
Aktivierung durch Sonnenlicht inklusive
Die neue Beschreibung ist ein großer Fortschritt im Vergleich zum etablierten Modell aus den 1940er Jahren, das nur die Reaktion von einer einzigen Molekülsorte im Nanoreaktor beschreibt. „Unser Modell schließt sogar Prozesse wie die Aktivierung von Molekülen im Nanoreaktor mit Sonnenlicht ein. Damit können wir auch Fragen der Energiematerial-Forschung bearbeiten“, fasst Joe Dzubiella zusammen. Mit dieser Arbeit hat er eines der Ziele erreicht, die er im Rahmen seines European Research Council Consolidator Grants (ERC-Grant 2015-2020) gesetzt hat.
Praxistest folgt
Die Theoriegruppe um Dzubiella will nun mit der HZB-Chemikerin Prof. Dr. Yan Lu zusammenarbeiten, die als Expertin für synthetische Nanoreaktoren gilt. „Wir verstehen jetzt sehr viel besser, was eigentlich geschieht. Dadurch können wir Voraussagen machen, wie sich die Prozesse in Nanoreaktoren steuern lassen, zum Beispiel um Reaktionen nach Bedarf zu starten oder zu stoppen“.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.