Elektrodenmaterialien aus der Mikrowelle

Neues Verfahren zur Synthese von Hochvolt-Kathoden für Lithiumionen-Akkus

19.10.2017 - Deutschland

Power für unterwegs ist gefragt: Je leistungsfähiger der Akku, desto größer die Reichweite von Elektroautos und desto länger die Betriebszeit von Handys und Laptops. Dr. Jennifer Ludwig von der Technischen Universität München (TUM) hat ein Verfahren entwickelt, mit dem sich das vielversprechende Hochvolt-Kathodenmaterial Lithium-Kobaltphosphat schnell, einfach, günstig und in höchster Qualität herstellen lässt.

Andreas Battenberg / TUM

Pinkfarbenes, mikrokristallines Lithium-Kobaltphosphat.

Katia Rodewald / TUM

Elektronenmikroskopische Aufnahme der plättchförmigen Lithium-Kobaltphosphat-Kristalle.

Andreas Battenberg / TUM
Katia Rodewald / TUM

Die Hoffnung ist pink: Das Pulver, das Jennifer Ludwig vorsichtig in eine Glasschale schüttet und das im Licht der Laborlampe rosarot leuchtet, hat das Potenzial, Akkus in Zukunft noch leistungsfähiger zu machen. „Das Lithium-Kobaltphosphat kann erheblich mehr Energie speichern als herkömmliche Kathodenmaterialien“, erklärt die Chemikerin.

Die Mitarbeiterin von Tom Nilges, Inhaber der Professur für Synthese und Charakterisierung innovativer Materialien, hat ein Verfahren entwickelt, mit dem sich das pinke Pulver schnell, mit geringem Energieaufwand und in bester Qualität herstellen lässt.

Lithium-Kobaltphosphat gilt unter Batterieforschern seit einiger Zeit als Material der Zukunft. Es arbeitet bei höherer Spannung als das bisher verwendete Lithium-Eisenphosphat und erreicht daher eine höhere Energiedichte – 800 Wattstunden pro Kilogramm statt bisher knapp 600 Wattstunden.

Bisherige Verfahren: teuer und energieaufwändig

Bisher war die Herstellung des vielversprechenden Hochvolt-Kathodenmaterials jedoch aufwändig, energieintensiv und wenig effizient: Man benötigte drastische Bedingungen mit Temperaturen von 900 Grad.

„Die Kristalle, die sich unter diesen extremen Bedingungen bilden, sind zudem unterschiedlich groß und müssen in einem zweiten energieintensiven Schritt erst zu nanokristallinem Pulver vermahlen werden“, berichtet Ludwig.

Die entstehenden Körnchen besitzen zudem nur in einer Richtung genügend ionische Leitfähigkeit. Auf dem größten Teil der Oberfläche läuft die chemische Reaktion zwischen Elektrodenmaterial und Elektrolyt im Akku nur schleppend ab.

Kristalle nach Maß

Die von Jennifer Ludwig entwickelte Mikrowellen-Synthese löst all diese Probleme auf einen Schlag: Für die Gewinnung von hochreinem Lithium-Kobaltphosphat benötigt man nur ein kleines Mikrowellen-Gerät und eine halbe Stunde Zeit.

Die Reagenzien werden zusammen mit einem Lösungsmittel in einem Teflon-Behälter erhitzt. Gerade einmal 600 Watt Leistung reichen aus, um die notwendige Temperatur von 250 Grad zu erzeugen und die Kristallbildung anzuregen.

Die sich dabei bildenden flachen Plättchen haben einen Durchmesser von weniger als einem Mikrometer, eine Dicke von wenigen hundert Nanometern, und die Achse höchster Leitfähigkeit ist in Richtung Oberfläche orientiert. „Diese Form sorgt für eine bessere elektrochemische Leistungsfähigkeit, weil die Lithium-Ionen nur kurze Wege im Kristall zurücklegen müssen“, erläutert Ludwig.

Gezielte Steuerung der Reaktion

Und noch ein weiteres Problem konnte die Chemikerin bei ihren Experimenten lösen: Bei Temperaturen von über 200 Grad und unter hohem Druck entsteht mitunter nicht das gewünschte Lithium-Kobaltphosphat, sondern ein bisher unbekanntes, komplexes Kobalt-Hydroxid-Hydrogenphosphat.

Jennifer Ludwig gelang es, den Reaktionsweg aufzuklären, die chemische Verbindung zu isolieren und dessen Struktur und Eigenschaften zu bestimmen. Da die neue Verbindung als Batteriematerial ungeeignet ist, modifizierte sie die Reaktionsbedingungen so, dass nur das gewünschte Lithium-Kobaltphosphat entsteht.

„Mit dem neuen Herstellungsverfahren können wir nun in einem einzigen Prozessschritt die leistungsfähigen, plättchenförmigen Lithium-Kobaltphosphat-Kristalle maßgeschneidert und in hoher Qualität herstellen“, urteilt Professor Nilges. „Damit ist eine weitere Hürde auf dem Weg zu neuen Hochvolt-Materialien überwunden.“

Für die Entwicklung ihres neuen Synthese-Verfahrens erhielt Jennifer Ludwig den Evonik-Forschungspreis, den der Chemie-Konzern jährlich an herausragende Nachwuchswissenschaftler vergibt.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Batterietechnik

Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.

30+ Produkte
150+ Unternehmen
35+ White Paper
20+ Broschüren
Themenwelt anzeigen
Themenwelt Batterietechnik

Themenwelt Batterietechnik

Die Themenwelt Batterietechnik bündelt relevantes Wissen in einzigartiger Weise. Hier finden Sie alles über Anbieter und deren Produkte, Webinare, Whitepaper, Kataloge und Broschüren.

30+ Produkte
150+ Unternehmen
35+ White Paper
20+ Broschüren

Themenwelt Synthese

Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.

20+ Produkte
5+ White Paper
20+ Broschüren
Themenwelt anzeigen
Themenwelt Synthese

Themenwelt Synthese

Die chemische Synthese steht im Zentrum der modernen Chemie und ermöglicht die gezielte Herstellung von Molekülen mit spezifischen Eigenschaften. Durch das Zusammenführen von Ausgangsstoffen in definierten Reaktionsbedingungen können Chemiker eine breite Palette von Verbindungen erstellen, von einfachen Molekülen bis hin zu komplexen Wirkstoffen.

20+ Produkte
5+ White Paper
20+ Broschüren