Kunststoff-Polymeren unter die Haube geschaut - Organische Halbleiter auf Molekülebene analysiert
Gegenüber herkömmlichen Halbleitern wie Silizium oder Galliumarsenid bieten konjugierte Kunststoff-Polymere den Vorteil, einfach hergestellt werden zu können und sich zu großen, mechanisch biegsamen Bauelementen verarbeiten zu lassen. Der Kreativität der Chemiker bei der Herstellung neuer Materialien ist dabei kaum eine Grenze gesetzt. "Dabei werden jeder neu synthetisierten Kreation neue Eigenschaften zugeschrieben", so Lupton. "Aber eine wirklich grundlegende Korrelation der chemischen Struktur dieser langkettigen Kunststoffe, etwa der Elemente, die das Rückgrat bilden, oder jener, die dieses verzieren, existiert noch nicht."
Bei konjugierten Halbleitern handelt es sich um molekulare Halbleiter. "Deshalb macht es Sinn, Untersuchungen auf der Ebene einzelner Moleküle durchzuführen", meint Florian Schindler, Erstautor der Studie. "So kann man anhand des Verhaltens eines einzelnen Moleküls Rückschlüsse auf die Ensembleeigenschaften wie in einer Photodiode, Solarzelle oder Leuchtdiode gewinnen." Die Einzelmolekülspektroskopie erwies sich dabei als Mittel der Wahl. Bei dieser Art der Analyse werden nur einzelne Moleküle untersucht, so dass auch deren individuelle Veränderungen im zeitlichen Verlauf beobachtet werden können. Bei einer gleichzeitigen Untersuchung mehrerer Moleküle überlappen die verschiedenen Zustände, so dass nur ein Durchschnittswert ermittelt werden kann.
Die konjugierten Polymere bestehen aus langen Ketten, die sich aus einzelnen Segmenten zusammensetzen. Diese so genannten Chromophore sind die Licht emittierenden Untereinheiten, die miteinander wechselwirken wie Lichtquellen auf einer Lichterkette. Erlischt eine dieser molekularen Lichtquellen, so kann dies auch zum Erlöschen der anderen führen. Die Chromophore waren die Untereinheiten, die von Lupton und seinem Team mittels Einzelmolekülspektroskopie individuell analysiert wurden. Die Physiker wählten dazu technologisch vielversprechende, aber chemisch sehr unterschiedlich aufgebaute Materialien. Tatsächlich konnten auf der Ebene der einzelnen Chromophore aber identische spektroskopische Merkmale nachgewiesen werden, die damit von der chemischen Struktur weitgehend unabhängig zu sein scheinen.
Die Physiker schlagen nun vor, dass Korrelationen zwischen Struktur und physikalischen Eigenschaften vorwiegend aus der "molekularen Überstruktur" resultieren, also daraus, wie sich die Polymere selbst organisieren. "Man könnte das damit vergleichen, dass in zwei unterschiedlichen Materialien - oder, wenn man so will, in einem Ford und einem Porsche - dieselben Glühlampen stecken", meint Lupton. Ebenfalls untersucht wurde der Vorgang, wenn ein Chromophor erlischt und die restlichen Lichtquellen folgen. "Dieser "Wackelkontakt" folgt einer vorgegebenen Systematik", berichtet Lupton. "Es flackern nicht nur die Lichter an und aus, sondern die Lichter selbst ändern in kurzen Zeitabständen ihre Farbe. Wir vermuten eine Umverteilung von Ladungen in der Umgebung des Moleküls." Die konjugierten Systeme bieten aber wohl nicht nur diesen neuartigen physikalischen Effekt. "Es könnten auch Anwendungen in der nanoskaligen Optoelektronik möglich sein", meint Lupton. "Dabei werden Bauelemente aus einzelnen oder einigen wenigen Molekülen aufgebaut."
Meistgelesene News
Themen
Organisationen
Weiterführender Link
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
HYPERION II von Bruker
FT-IR und IR-Laser-Imaging (QCL) Mikroskop für Forschung und Entwicklung
Untersuchen Sie makroskopische Proben mit mikroskopischer Auflösung (5 µm) in sekundenschnelle
Eclipse von Wyatt Technology
FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln
Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität
Holen Sie sich die Chemie-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.