Warum organischen Leuchtdioden nicht mehr Lichter aufgehen

13.04.2005

Wie sieht der Bildschirm der Zukunft aus? Extrem flach, biegsam, selbstleuchtend, farbecht und kontrastreich - wenn sich die organischen Leuchtdioden, kurz OLEDs, erst einmal durchgesetzt haben. Erste Displays sind bereits auf dem Markt, wobei sie meist kleine Moleküle in ihrer Farbschicht enthalten (SMOLEDs). Andere Geräte nutzen Polymere (PLEDs). Es wurde bislang vermutet, dass in der bei PLEDs für das Leuchten verantwortlichen Kunststoffschicht die Umwandlung eines Anregungszustandes auftreten kann, die höhere Wirkungsgrade ermöglicht. Ein Team um Dr. John Lupton vom Department für Physik der Ludwig-Maximilians-Universität (LMU) München konnte dies jetzt widerlegen

"Unsere Aussage klingt damit auf den ersten Blick nicht unbedingt positiv", meint Lupton. "Das Ergebnis hat aber ganz erhebliche technologische Relevanz, besonders für Firmen, die Produktionslinien aufbauen wollen."

Die Technologie der organischen Leuchtdioden basiert auf dem Prinzip der Elektrolumineszenz. Die Bauelemente sind aus mehreren, extrem dünnen Schichten aufgebaut. Eine davon, die Kathode, injiziert Elektronen. Eine andere, die Anode, entfernt Elektronen, so dass Löcher entstehen. Elektronen und Löcher können sich frei bewegen und treffen zwischen Kathode und Anode zusammen. Dort befindet sich eine dünne Schicht aus organischem Farbstoff. Elektronen und Löcher kombinieren, wenn sie aufeinander treffen, und bilden ein so genanntes Exziton. Dabei wird in der Farbstoffschicht Energie in Form eines Photons frei. Bei diesem Vorgang ist es wichtig, das Exziton in einen geeigneten Anregungszustand zu versetzen. Dieser Zustand wird durch die quantenmechanische Größe des Elektronspins vorgegeben. "Wenn ein Elektron und ein Loch in der Farbstoffschicht zusammentreffen, gibt es vier mögliche Spinkombinationen", berichtet Lupton. "Eine davon bildet ein so genanntes Singulett, die drei anderen Tripletts." Sichtbares Licht emittieren kann aber nur das Singulett, also eines von vier Exzitonen. Tripletts dagegen geben die Energie in Form von Wärme ab. Ein erheblicher Teil der elektrischen Energie geht damit in den dunklen Triplettkanälen verloren. Der elektrische Wirkungsgrad der LED ist zunächst auf maximal 25 Prozent limitiert.

Lupton und sein Team konnten nun erstmals nachweisen, dass in den Polymeren prinzipiell keine Umwandlung von Tripletts zu Singuletts stattfindet. Sie entwickelten eine spezielle Methode, die Tripletts in dem Polymer direkt sichtbar zu machen. Dabei ermöglichen kleinste metallische Verunreinigungen im Polymer eine direkte Emission des Tripletts - der dunkle Zustand wird hell. "Seit Jahren gibt es die Diskussion, ob langkettige Polymere besser für organische Leuchtdioden geeignet sind, weil der Anteil der elektrisch gebildeten Triplettanregungen geringer sein könnte als bei kleinen Molekülen", so Lupton. "Die Hoffnung, dass Tripletts zu Singuletts übergehen, haben wir jetzt aber eindeutig entkräftet. Das Verhältnis Singulett zu Triplett kann nicht über 1:3 liegen."

Die irrtümlicherweise vermutete Spinkonversion der Tripletts galt bislang als ein großer Vorteil der PLEDs gegenüber den SMOLEDs, die erheblich aufwändiger herzustellen sind. SMOLEDs müssen in einem aufwändigen Verfahren unter Vakuum hergestellt werden. PLEDs dagegen können relativ einfach, beispielsweise mit einer Art Tintenstrahldrucker, hergestellt werden. Auf der technischen Seite hinken die Polymere den kleinen Molekülen in manchen Aspekten ein paar Jahre hinterher, vor allem in Hinsicht auf die Effizienz - und auch bei der Lösung des Triplettproblems.

Bei SMOLEDs wurden bereits erfolgreich molekulare Komplexe in die Farbstoffschicht eingebracht. Deren besondere chemische Eigenschaften ermöglichen, dass die Tripletts direkt unter Aussendung von Licht zerfallen. "Bei diesen so genannten phosphoreszierenden Emittern lassen sich Quantenausbeuten von nahezu 100 Prozent erreichen", so Lupton. Das Verfahren ist bei Polymeren prinzipiell auch möglich, aber noch nicht so weit fortgeschritten, weil die Frage nach der Triplettumwandlung geklärt schien. Die neuen Ergebnisse zerschlagen damit weniger ein Forschungsfeld, als dass sie ein neues anstoßen: die Einbringung phosphoreszierender Emitter in die Polymere. Aber auch für andere Gebiete sind die Resultate von Interesse.

Originalpublikation: M. Reufer, M. J. Walter, P. G. Lagoudakis, A. B. Hummel, J. S. Kolb, H. G. Roskos, U. Scherf, J. M. Lupton; "Spin-conserving carrier recombination in conjugated polymers"; Nature Materials 2005, 4 (4), 340.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

HYPERION II

HYPERION II von Bruker

FT-IR und IR-Laser-Imaging (QCL) Mikroskop für Forschung und Entwicklung

Untersuchen Sie makroskopische Proben mit mikroskopischer Auflösung (5 µm) in sekundenschnelle

FT-IR-Mikroskope
Eclipse

Eclipse von Wyatt Technology

FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln

Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...