Auf molekularer Achse in die Nanomechanik
Forscher am Stuttgarter Max-Planck-Institut für Festkörperforschung nutzen Nanoröhrchen aus Kohlenstoff als Torsionsfedern
Die Stuttgarter Forscher haben untersucht, ob sich mit einwandigen Nanoröhrchen auch mechanische und elektromechanische Komponenten mit winzigen Abmessungen herstellen lassen. Dazu hängten sie lithografisch erzeugte Metallblöcke an einem einzelnen einwandigen Kohlenstoff-Nanoröhrchen auf. Diese Metallblöcke sind unter einem optischen Mikroskop sichtbar, werden aber durch ein fast tausendmal kleineres einzelnes Molekül getragen. Im optischen Mikroskop - wie auch bei kleinerer Vergrößerung im Elektronenmikroskop - sieht man daher ein scheinbar frei schwebendes Objekt. Erst bei höherer Vergrößerung im Transmisions-Elektronenmikroskop lässt sich das Molekül erkennen, das die Struktur trägt.
Das aufgehängte Objekt kann durch ein elektrisches Feld bewegt werden. Dabei dient das Nanoröhrchen als molekulare Achse, die durch Torsion deformiert wird. Die Struktur wird dabei von nur wenigen molekularen Bindungen getragen: Auf einem Querschnitt durch eine Kohlenstoff-Nanoröhre liegen nur etwa 20 Kohlenstoff-Bindungen; die genaue Struktur der Röhrchen bestimmten die Wissenschaftler durch Elektronenbeugung.
Derartige Bauteile könnten als Funktionselemente in nanoelektromechanischen Systemen dienen - etwa als winzige bewegliche Spiegel in optischen Anwendungen, beispielsweise für die Telekommunikation. Ebenso ließen sie sich als Sensoren verwenden, da bereits sehr kleine Kräfte eine Drehung des Metallblocks und damit auch eine Verformung der Nanoröhrchen bewirken. Max-Planck-Forscher Jannik Meyer erwartet, dass sich die elektrische Leitfähigkeit der Nanoröhrchen stark mit deren Verformung ändert - dass also diese Verformung einfach elektrisch detektierbar wäre. So beobachteten die Wissenschaftler, dass bereits die thermische Energie bei Raumtemperatur eine deutlich sichtbare Vibration des Metallblocks hervorruft, was die Empfindlichkeit dieses Systems zeigt.
Meyer und seine Kollegen halten auch kompliziertere mechanische Systeme für denkbar, in denen mehrere frei aufgehängte Objekte untereinander über Nanoröhrchen verbunden sind. Zunächst allerdings geht es darum, das Verhalten von Kohlenstoff-Nanoröhrchen unter Verformung genau zu analysieren. Und so dient das Stuttgarter "Nanopaddel" in jedem Fall als wertvolles Instrument der Grundlagenforschung.
Originalveröffentlichung: J. C. Meyer, M. Paillet, S. Roth; "Single-Molecule Torsional Pendulum"; Science 2005.
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Sensortechnik
Die Sensortechnik hat die chemische Industrie revolutioniert, indem sie präzise, zeitnahe und zuverlässige Datenbereitstellung in einer Vielzahl von Prozessen ermöglicht. Vom Überwachen kritischer Parameter in Produktionslinien bis hin zur Früherkennung potenzieller Störungen oder Gefahren – Sensoren sind die stillen Wächter, die Qualität, Effizienz und Sicherheit gewährleisten.
Themenwelt Sensortechnik
Die Sensortechnik hat die chemische Industrie revolutioniert, indem sie präzise, zeitnahe und zuverlässige Datenbereitstellung in einer Vielzahl von Prozessen ermöglicht. Vom Überwachen kritischer Parameter in Produktionslinien bis hin zur Früherkennung potenzieller Störungen oder Gefahren – Sensoren sind die stillen Wächter, die Qualität, Effizienz und Sicherheit gewährleisten.