Wandlung von Erdgas zu flüssigem Treibstoff

Keramische Membranen zeigen Lösungsweg auf

29.08.2006

Am Institut für Physikalische Chemie und Elektrochemie der Leibniz Universität Hannover werden traditionell Mechanismen untersucht, nach denen oxidische Keramiken bei hohen Temperaturen Sauerstoff transportieren. Durch Einsatz dieser Hochtemperatur-Sauerstoffleiter lässt sich wahrscheinlich ein Problem der nahen Zukunft technisch lösen: Die Wandlung von Erdgas zu flüssigen Treibstoffen.

Erdgas, das auch ein Nebenprodukt der Erdölförderung ist und dort häufig in Mengen auftritt, die keine Pipeline oder eine Verflüssigung für den Tankertransport rechtfertigen, wird häufig einfach verbrannt. Eine Nutzung zum Beispiel für die Petrolindustrie wäre möglich, wenn es gelänge, dieses Gas in transportierbare flüssige Energieträger, also Benzin, Diesel oder Alkohol, umzuwandeln. Ein Konzept besteht darin, das Methan durch teilweise Oxidation in ein reaktives Synthesegas umzuwandeln, das aus Kohlenstoffmonoxid (CO) und Wasserstoff (H2) besteht. In einem zweiten Schritt werden aus den Synthesegasbausteinen die Benzin-, Diesel- oder Alkoholmoleküle zusammengesetzt. Dieser sogenannte "synfuel" ist hochwertig und schwefelfrei. Der für diese Teiloxidation des Methans benötigte Sauerstoff kann durch die sauerstofftransportierende Keramikmembran kontinuierlich der Luft entnommen werden. Die technische Vorrichtung, in der dies erfolgt wird Membranreaktor genannt.

Gemeinsam mit Humboldt Research Fellow Dr. Haihui Wang vom Dalian Institut der Chinesischen Akademie der Wissenschaften wurden Sauerstoffleiter mit neuer chemischer Zusammensetzung entwickelt und durch die Leibniz Universität Hannover patentiert. Für die technische Verwirklichung der im Labor entwickelten spröden keramischen Materialien musste jedoch eine neue Lösung gefunden werden. Die Lösung waren flexible keramische Hohlfasern, die mit dem Stuttgarter Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik gemeinsam entwickelt wurden und in einem Spinnprozess kilometerlang herstellbar sind.

Um die sauerstofftransportierenden Membranen materialchemisch zu optimieren, hat sich die Hochleistungsdurchstrahlungs-Elektronenmikroskopie als unverzichtbares Werkzeug erwiesen. Durch eine gezielte Synthese von Nanostrukturen in der Keramik lässt sich der Sauerstoff-Fluss erhöhen (Korngrenzendesign). Diese Untersuchungen ermöglichen tiefe Einblicke in die atomare und elektronische Struktur der Festkörper und liefern zudem Daten zur örtlichen chemischen Zusammensetzung auf atomarem Niveau.

Ein weiterer Anwendungsfall der neuen Keramikmembranen kann die Erzeugung sauerstoffangereicherter Luft mit 40 Prozent Sauerstoff sein, die zusammen mit Erdgas das Ausgangsgas der Synthese von Ammoniak für die Düngemittelproduktion bildet. Ein starker Industriepartner bei der Verwirklichung der wissenschaftlichen Ergebnisse in der industriellen Praxis ist die Anlagenbaufirma Uhde als Teil des Thyssen-Krupp-Konzerns.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Whatman™ folded filter papers

Whatman™ folded filter papers von Cytiva

Whatman-Faltfilterpapiere

Praktische gefaltete Formate beschleunigen Ihre Probenvorbereitung

Filterpapiere
Systec H-Series

Systec H-Series von Systec

Sichere, reproduzierbare und validierbare Sterilisation von Flüssigkeiten, Festkörpern und Abfällen

Kompakte Autoklaven mit 65-1580 Liter Nutzraum, flexibel erweiterbar für verschiedene Applikationen

Laborautoklaven
Gilson MyPIPETMAN Select and MyPIPETMAN Enterprise Pipettes

Gilson MyPIPETMAN Select and MyPIPETMAN Enterprise Pipettes von Gilson

Deine Gilson-Pipette mit deinem Namen mit deiner Lieblingsfarbe!

Personalisieren Sie Ihre Pipette für Ihre Anforderungen

Pipetten
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...